
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

FP vs. OOP
Problem Decomposition

1FP vs. OO Problem Decomposition

Two world views

FP: functions perform some operation

OOP: classes/prototypes give behavior to some kind of data

Which is better? Depends on software evolution, taste.

Each can (awkwardly) emulate the other.

2FP vs. OO Problem Decomposition

Common pattern: expressions

3

eval toString usesX …

VarX

Sine

Times

…

Va
ria

nt
s

of
 a

 ty
pe

 o
f d

at
a

Operations over type of data

FP vs. OO Problem Decomposition

FP: behavior by operation

4

eval toString usesX …

VarX

Sine

Times

…
Datatype with
constructor per variant

Function per operation
with branch per variant

Pattern-matching selects variant.
Wildcard can merge rows in a function.

FP vs. OO Problem Decomposition

OOP: behavior by variant

5

eval toString usesX …

VarX

Sine

Times

…Subclass per variant
overrides each operation method
to implement variant's behavior

Abstract base class or interface
with method per operation

Dynamic dispatch selects variant.
Concrete method in base class
can merge rows where not overridden.

FP vs. OO Problem Decomposition

FP: extensibility

6

Add operation:
add function,
no other changes

Add variant:
add constructor,
change all functions over datatype

Static type-checker gives "to-do list"
via inexhaustive pattern-match warnings

eval toString usesX depth

VarX

Sine

Times

Sqrt

FP vs. OO Problem Decomposition

OOP: extensibility

7

eval toString usesX depth

VarX

Sine

Times

Sqrt

Add operation:
add method
to abstract base class / interface
and all subclasses

Add variant:
add subclass
/ class implementing interface,
no other changes

Static type-checker gives "to-do list"
via errors about
non-overridden abstract method
/non-implemented interface method

FP vs. OO Problem Decomposition

Extensibility

Making software extensible is valuable and hard.
• If new operations likely, use FP
• If new variants likely, use OOP
• If both, use somewhat odd "design patterns"
• Reality: The future is hard to predict!

Extensibility is a double-edged sword.
• Non-invasive reuse: original code can be reused without changing it.
• Difficult local reasoning/changes: reasoning about/changing original

code requires reasoning about/changing remote extensions.

Restricting extensibility is valuable.
• ML abstract types
• Java final

8FP vs. OO Problem Decomposition

Binary Operations

What about operations that take two arguments of possibly
different variants?

– Include value variants Int, Rational, ...
– (Re)define Add to work on any pair of Int, Rational, ...

The addition operation alone is now a different 2D grid:

9

Add Int Rational ...

Int

Rational

...

FP vs. OO Problem Decomposition

ML approach: pattern-matching

Natural: pattern-match both simultaneously

10

fun add_values (v1,v2) =
case (v1,v2) of

(Int i, Int j) => Int (i+j)
| (Int i, Rational(n,d)) => Rational (i*d+n,d)
| (Rational _, Int _) => add_values (v2,v1)
| ...

fun eval e =
case e of

...
| Add(e1,e2) => add_values (eval e1, eval e2)

FP vs. OO Problem Decomposition

OOP approach: dynamic dispatch

11

abstract class Value extends Expr {
...
Value addValues(Value v);

}

class Add extends Expr {
...
Value eval() {

e1.eval().addValues(e2.eval())
}

}

class MyInt extends Value {
…
// add this to v
Value addValues(Value v) {

… // what goes here?
}

}

Depends on what
kind of value v is.

Dynamic dispatch chooses
addValues based on
result of e1.eval()

FP vs. OO Problem Decomposition

Explicit Double Dispatch
OOP: Make variant choices using dynamic dispatch.

FP vs. OO Problem Decomposition 12

abstract class Value extends Expr {
Value addValues(Value v);
Value addInt(MyInt v);
Value addRational(MyRational v);

}

class MyInt extends Value {
...
Value addValues(Value) { return v.addInt(this); }

Value addInt(MyInt v) { ... }
Value addRational(MyRational v) { ... }

}

Dynamic dispatch
on first value
got us here.

Now, dispatch on second value,
"telling it" what kind of value this is.

Repeat for all Value subclasses…

Reflecting
Double dispatch manually emulates basic pattern-matching.

– An analogous FP pattern emulates dynamic dispatch.
Does it change the way in which OOP handles evolution?

• Add an operation over pairs of Values:
– OOP double dispatch: how many added / changed classes?
– FP pattern matching: how many added / changed functions?

• Add a kind of Value:
– OOP double dispatch: how many added / changed classes?
– FP pattern matching: how many added / changed functions?

What if we could dispatch based on all arguments at once?

13FP vs. OO Problem Decomposition

Multiple dispatch / multimethods
Dynamic dispatch on all arguments.

– One version of method per combination of argument types.
– NOT static overloading.
– Remarkably close to functions that pattern-match arguments.

• But the individual branches may be split up.
• But subtyping can lead to ambiguous dispatch.

If dynamic dispatch is essence of OOP, multiple dispatch is
its natural conclusion.

Old research idea picked up in some recent languages (e.g.,
Clojure, Julia)

14FP vs. OO Problem Decomposition

Closures vs. Objects

Closure:
– Captures code of function, by function definition.
– Captures all bindings the code may use, by lexical scope of

definition.

Object:
– Captures code for all methods that could be called on it, by

class hierarchy.
– Captures bindings that may be used by that code, by

instance variables declared in class hierarchy.

Each can (awkwardly) emulate the other.

16FP vs. OO Problem Decomposition

