
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Dynamic Dispatch
semantic essence

of "object-oriented" programming languages
(OOP)

1Dynamic Dispatch

How are names resolved?

Key piece of semantics in any language.

• ML, Racket:
– Just one kind of variables.
– Lexical scope – unambiguous binding
– Record field names are not variables: no "lookup"

• Java, …:
– Local variables: lexical scope (more limited)
– Instance variables, methods

• Look up in terms of special self / this "variable"
• it's more complicated…

Dynamic Dispatch 2

Method lookup in OO languages

Two key questions for Java:

– General case:
What m is run by ___.m() ?

– Specific case:
What m is run by this.m() ?

3Dynamic Dispatch Dynamic Dispatch 4

class Point {
double x, y;
Point(double x, double y) {
this.x = x; this.y = y;

}
double getX() { return this.x; }
double getY() { return y; }
double distFromOrigin() {
return Math.sqrt(this.getX() * this.getX()

+ getY() * getY());
}

}

class PolarPoint extends Point { // poor design, useful example
double r, theta;
PolarPoint(double r, double theta) {
super(0.0, 0.0); this.r = r; this.theta = theta;

}
double getX() { return this.r * Math.cos(this.theta); }
double getY() { return r * Math.sin(theta); }

}
Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???overriding

implicit this.

dynamic dispatch

Method lookup: example

Key questions:
– Which distToOrigin is called?
– Which getX, getY methods does it call?

Dynamic Dispatch 5

Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???

Dynamic dispatch
(a.k.a. late binding, virtual methods)

The unique OO semantics feature.

Method call: e.m()

Evaluation rule:
1. Under the current environment, evaluate e to value v.
2. Let C refer to the class of the receiver object v.
3. Until class C contains a method definition m() { body }

let C refer to the superclass of the current C and repeat step 3.
4. Under the environment of class C, extended with the binding

this ↦ v, evaluate the body found in step 3.

Note: this refers to current receiver object, not containing class.
– this.m() uses dynamic dispatch just like other calls.
– NOT lexical scope, not dynamic scope

Dynamic Dispatch 6

Dynamic Dispatch is not ...
obj0.m(obj1,...,objn)

≠
m(obj0,obj1,...,objn)

Is this just an implicit parameter that captures a first
argument written in a different spot?

NO!
"What m means" is determined by run-time class of obj0!

Must inspect obj0 before starting to execute m.

this is different than any other parameters.
7Dynamic Dispatch

Key artifacts of dynamic dispatch
• Why overriding works...
distFromOrigin in PolarPointA

• Subclass's definition of m "shadows" superclass's
definition of m when dispatching on object of
subclass (or descendant) in all contexts,
even if dispatching from method in superclass.

• More complicated than the rules for closures
– Must treat this specially
– May seem simpler only if you learned it first
– Complicated != inferior or superior

8Dynamic Dispatch

Closed vs. open

ML: closures are, well, closed.

May shadow even, but calls to odd are unaffected.

Dynamic Dispatch 9

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

(* does not change odd: too bad, would help *)
fun even x = (x mod 2) = 0

(* does not change odd: good, would break *)
fun even x = false

Closed vs. open
Most OOP languages: subclasses can change the behavior of
superclass methods they do not override.

Dynamic Dispatch 10

class A {
boolean even(int x) {

if (x == 0) return true;
else return odd(x-1);

}
boolean odd(int x) {

if (x == 0) return false;
else return even(x-1);

}
}
class B extends A { // improves odd in B objects

boolean even(int x) { return x % 2 == 0; }
}
class C extends A { // breaks odd in C objects

boolean even(int x) { return false; }
}

OOP trade-off: implicit extensibility
Any method that calls overridable methods may have its
behavior changed by a subclass even if it is not overridden.

– On purpose, by mistake?
– Behavior depends on calls to overridable methods

• Harder to reason about “the code you're looking at.”
– Sources of unknown behavior are pervasive:

all overridable methods transitively called by this method.
– Avoid by disallowing overriding: “private” or “final”

• Easier for subclasses to extend existing behavior without
copying code.
– Assuming superclass method is not modified later

Dynamic Dispatch 11

FP trade-off: explicit extensibility

A function that calls other functions may have its
behavior affected only where it calls functions
passed as arguments.

• Easier to reason about “the code you're looking at.”
– Sources of unknown behavior are explicit:

calls to argument functions.

• Harder for other code to extend existing behavior
without copying code.
– Only by functions as arguments.

Dynamic Dispatch 12

Aside: overloading is static.

overloading:
> 1 methods in class have same name

overriding:
if and only if same number/types of arguments

Pick the "best" overloaded method using the
static types of the arguments

– Complicated rules for “best”
– Some confusion when expecting wrong over-thing

13Dynamic Dispatch

static dispatch
(a.k.a early binding, non-virtual methods)

• Lookup method based on static type of receiver.
• Calls to e.m2() where e has declared class C

– (the lexically enclosing class is this's "declared class")

– always resolve to "closest" method m2 defined in C or C's ancestor
classes

– completely ignores run-time class of object result of e

• ... similar to lexical scope for method lookup with inheritance.

• Same method call always resolves to same method definition.
• Determined statically by type system before running program.

• used for super in Java, non-virtual methods in C++

14

Requires
static types...

Dynamic Dispatch

Dynamic Dispatch 15

class Point {
double x, y;
Point(double x, double y) {
this.x = x; this.y = y;

}
double getX() { return this.x; }
double getY() { return y; }
double distFromOrigin() {
return Math.sqrt(this.getX() * this.getX()

+ getY() * getY());
}

}

class PolarPoint extends Point { // poor design, useful example
double r, theta;
PolarPoint(double r, double theta) {
super(0.0, 0.0); this.r = r; this.theta = theta;

}
double getX() { return this.r * Math.cos(this.theta); }
double getY() { return r * Math.sin(theta); }

}
Point p = …; // ???
p.getX(); // ???
p.distFromOrigin(); // ???overriding

implicit this.

static dispatch

