CS 251 Fall 2019 WELLESLEY
Principles of Programming Languages \ x }
Ben Wood

Subtyping
and Substitutivity

https://cs.wellesley.edu/~cs251/f19/ Subtyping 1



https://cs.wellesley.edu/~cs251/f19/

00 essence:

* Program design principles?

— Objects model state/behavior of real-world
entities/concepts? Kinda

— Organization by classification and encapsulation
— Reuse via implicit extensibility

* Key semantics:
— Late binding / dynamic dispatch
— Substitutability and subtyping
— Inheritance or delegation

Will contrast function-oriented principles/semantics later.



Subtyping and substitutability

class {
private int x,y,w,h;
void moveTo(int x, int y);
void setSize(int width, int height);
void show();
void hide();

class {
private int x,y,w,h;
private Color c;
void moveTo(int x, int y);
void setSize(int width, int height);
void show();
void hide();
void setFillColor(Color color);
Color getFillColor();



Subtyping and substitutability

void f£() { void f() {
r = r =
new (); new ()7
r.moveTo(100,100); r.moveTo(100,100);
r.hide(); r.hide();
} }
Which are safe?
void g() { void g() |
r = r =
new (); new ()7
r.moveTo(100,100); r.moveTo(100,100);
r.setFillColor(Color.red); r.setFillColor(Color.red);
r.hide(); r.hide();
} }

Subtyping 4



Subtyping: broad definitions

Job of type system:

If a program type-checks, then evaluation of the program never
applies an operation to an incompatible value.

New type relation: T <: U
"Type T is a subtype of type U."

Sound only if all operations that are valid on values of type U
are also valid on values of type T.

New type-checking rule:
If e : Tand T <: U then e : U.

Principle: substitutability.



Type variable instantiation is NOT subtyping.

Parametric polymorphism # subtype polymorphism
map : ('a -=> 'b) -> 'a list -> 'b list
f : int -> 1int

Xs : 1nt list

(map £ xs) : int list < type-check

type variable instantiation: 'a = int, 'b = int
ML has no subtyping



A made-up language for subtyping data

e Can cover most core subtyping ideas by
considering records with mutable fields

* Make up our own syntax

— ML records, no subtyping or field-mutation
— Racket and Smalltalk: no static type system
— Java is verbose

Subtyping 7



Mutable Records (made-up lang.)

(half like ML, half like Java)

Record creation (field names and contents):
{fl1=el, f2=e2, .., fn=en}
Evaluate all ei, make a record

Record field access: e.f

Evaluate e to record v with an £ field,
get contents of £ field

Record field update €l.f = e2
Evaluate el to a record v1 and e2 to a value v2;
Change v1's f field (which must exist) to v2;
Return v2



A Basic Type System

Record types: fields a record has, type for each field

{fl:tl1l, f2:t2, .., fn:tn}
Type-checking expressions:

e Ifel : tl,..,en : tn

then {fl1l=el,..,fn=en} : {f1:tl,..,fn:tn}
e Ife ¢ {..,f:t,..}

thene.f : t

e Ifel : {..,f:t,..} ande2 : t,
thenel.f = e2 : t



Type system is sound (safe).

Does this program type check?
Can it ever try to access a non-existent field?

fun distToOrigin (p:{xX:real,y:real}) =
Math.sqrt(p.x*p.X + p.Y*p.Vy)

val p : {x:real,y:real} =
{x=3.0, y=4.0}

val five : real = distToOrigin(p)



Type system is sound (safe).

Does this program type check?
Can it ever try to access a non-existent field?

fun distToOrigin (p:{X:real,y:real})
Math.sqrt(p.x*p.X + p.yV*p.Vy)

val ¢ : {x:real,y:real,color:string}
{x=3.0, y=4.0, color="green'"}

val five : real = distToOrigin(c)



Why not allow extra fields?

Natural idea of related types: if expression has type
{f1 : t1, £2 : t2, ..., fn : tn}

Then it also can have a type with a subset of those fields.

fun distToOrigin (p:{x:real,y:real}l) = ..
fun makePurple (p:{color:string}) =
p.color = "purple"

val ¢ :{x:real,y:real,color:string} =
{x=3.0, y=4.0, color="green"}

val

val

distToOrigin(c)
makePurple(c)




Changing the type system

Solution: 2 additions, no changes

— subtyping relation: t1 <: t2
"t1 is a subtype of t2"

— new typing rule:
f e ¢+ £t1 and tl <: t2,
then (also) e : t2

Now define t1l <: t2



4 reasonable subtyping rules

Principle: substitutability

If £1 <: t2, then values of type t1 must be usable in every way
values of type t2 are.

1. “Width” subtyping:
A supertype can have a subset of fields with the same types.

2. “Permutation” subtyping:
A supertype can have the same set of fields with the same types
in a different order.

3. Transitivity:
ftl<:t2andt2<:t3,thentl<: t3.

4. Reflexivity:
Every type is a subtype of itself: £t <: t

May seem unnecessary, but simplifies other rules in large languages



Depth subtyping?

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0,y=4.0,2z=0.0}, r=1.0}

val = circleY(sphere)

Does this currently type-check?
Does it ever try to use non-existent fields?
How could we change the type system to allow it?

Should we?




Depth subtyping?

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0,y=4.0,2z=0.0}, r=1.0}

val = circleY(sphere)

Type checks only if:
{center:{x:real,y:real,z:real}, r:real}
<:
{center:{x:real,y:real}, r:real}




Adding depth subtyping

New subtyping rule:

If ta <: tb,

then {f1l:t1, .., f:ta, .., fn:tn}
<: {fl:t1, .., f£:tb, .., fn:tn}

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0,y=4.0,2z=0.0}, r=1.0}

val = circleY(sphere)

Does it type-check now?



We added a new subtyping rule
to make type system more flexible.

Does it allow any program that accesses non-
existent fields?



Mutation strikes again

fun setToOrigin (c:{center:{x:real,y:real}, r:real})=
c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0, y=4.0, 2z=0.0}, r=1.0}

val = setToOrigin(sphere)

val sphere.center.z (* kaboom! (no z field) ¥*)

Subtyping

19



Moral of the story

In a language with records/objects with mutable fields,
depth subtyping is unsound.

Subtyping cannot allow changing the type of mutable fields.

If fields are immutable, then depth subtyping is sound!

Choose at most two of three:
— mutability
— depth subtyping
— soundness

Subtyping 20



Subtyping mistakes: Java (really)

if £l <: t2, then t1[] <:t2[]
"Covariant array subtyping"

class Point { .. }
class ColorPoint extends Point { .. }

void replaceFirst(Point[] pts) {
pts[0] = new Point(3,4);

}

String m2(int x) {
ColorPoint[] cpts = new ColorPoint[x];
for(int 1=0; 1 < x; i++)

replaceFirst(cpts);
return cpts[0].color;

cpts[i] = new ColorPoint (0,0, "green");




What???

Why allow it?

Object[] System.arrayCopy(Object[] src) {..}
Seemed especially important before generics

What goes wrong?

"Fix:" dynamic checking on every non-primitive array store.

Subtyping 22



From Bill Joy (Sun Cofounder)

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: ...[discussion about java genericity]

actually, java array covariance was done for less noble reasons ...: it
made some generic "bcopy" (memory copy) and like operations much
easier to write...

| proposed to take this out in 95, but it was too late (...).
| think it is unfortunate that it wasn't taken out...

It would have made adding genericity later much cleaner, and [array
covariance] doesn't pay for its complexity today.

wnj




Hypothetical:

Allow subclass C to change type of field from
superclass in scope of C

— To unrelated type
— To supertype of field's original type
— To subtype of field's original type

Which ones go wrong?



null — the "billion-dollar mistake"

- C. A. R. Hoare

Chose subtyping flexibility over safety
— null has no fields or methods

— Java and C# static type systems let it have any
object type

— Evaluatinge ine.f ore.m(...) could always
produce a value without £ or m!

— Run-time checks and errors...
that should be static type errors.

ML gets this right:
options make potential lack of thing explicit.

— Many languages finally moving this direction.



Function/method subtyping:
boring part

Point getLocation() {

return new ColorPoint (0.0, 0.0, "red");
void plot(Point p) {..}
plot(new ColorPoint(1.0,2.0,"red"));
ColorPoint findRedDot() {..}

Point p = findRedDot();



Function/method subtyping:
interesting part

When is one function type a subtype of another?

— For higher-order functions:
If a function expects an argument of type t1 ->t2,

can you pass a function of type t3 ->t4 instead?

— For overriding;
If a superclass has a method of type t1 —>t2,

can you override it with a method of type t3 ->t47?

— See Subtype.java.



Function/method subtyping

Argument types are contravariant.
->

Return types are covariant.

ColorPoint -> Point supertype

L e *A
ColorPoint -> ColorPoint Point -> Point

Point -> ColorPoint
subtype

Subtyping 28



How special is this?

class A {
int m() { return 0; }

}
class B extends A {
int x;
int m() { return this.x; }

} B <: A

A.this <: B.this
Is this contravariant (like arguments) or covariant?




Remember!

If t3<:tl and t2<: t4,
then t1->t2 <: t3->t4

Non-negotiable:

Function/method subtyping is:
— contravariant in the argument
— covariant in the result

Subtyping 30



