CS 251 Fall 2019 WELLESLEY
A Principles of Programming Languages \2/ Parallelism and Concurrency in 251
* Goal: encounter
— essence, key concerns
Pa Fa I Iel ISm — non-sequential thinking
— some high-level models
— some mid-to-high-level mechanisms
* Non-goals:
— performance engineering / measurement
— deep programming proficiency
— exhaustive survey of models and mechanisms

(and Concurrency)

https://cs.wellesley.edu/~cs251/f19/ Parallelism 1 Parallelism 2

Parallelism Concurrency

Coordinate access
to shared resources.

Use more resources
to complete work faster.

Ellmlnate 1 blg assumption: data / work workers = computations
Evaluation-happens AREANAR Evle

// \\ divided among \\ | /

I R R NRRENERR

workers = resources data = resources

Both can be expressed using a variety of primities.

Parallelism 3 Parallelism 4

Manticore

Parallelism via Manticore

* Extends SML with language features for
parallelism/concurrency.

* Mix research vehicle / established models.

* Parallelism patterns:

— data parallelism:
* parallel arrays
* parallel tuples

— task parallelism:
* parallel bindings
» parallel case expressions

* Unifying model:
— futures / tasks
* Mechanism:
— work-stealing

Parallelism

5

Manticore

Parallel Arrays: 'a parray

[| el1, e2, .., en |] literal parray

[| elo to ehi by estep |] integer ranges

[| e | x in elems |] parallel mapping comprehensions

[| e | x in elems where pred |] parallel filtering comprehensions

Parallelism

6

Manticore

parallel array comprehensions

[| el | x in e2 |]

Evaluation rule:

1. Under the current environment, E, evaluate
e2to a parray v2.

2. For each element vi in v2, with no constraint
on relative timing order:
1. Create new environment Ei = x~vi, E.
2. Under environment E1i, evaluate el to a value vi '

3. Theresultis[| v1', v2', .., va' |]

Parallelism

7

Data Parallelism

many argument data of same type

/i

parallelize
D D Q D application of same operation
to all data
\
/ no ordering/
\ / interdependence

many result data of same type

Parallelism

8

Manticore

Parallel Map / Filter

fun mapP f xs =
[| £ x | x in xs |]

('a -=> 'b) -> 'a parray -> 'b parray

fun filterP p xs =
[| x | x in xs where p x |]

('a -> bool) -> 'a parray -> 'a parray

Parallelism

9

Manticore
Parallel Reduce
fun reduceP f init xs =

(('a * 'a) -=> 'a) -> 'a -> 'a parray -> 'a

sibling of fold
f must be associative

««« Pargllelism 10

Task Parallelism

parallelize application
of different operations
within larger computation

some ordering/interdependence
controlled explicitly

Parallelism 11

Manticore

Parallel Bindings

sorted_lIt sorted_eq sorted_gt
fun gsortP (a: int parray) : int parray =
if lengthP a <=1
then a
else
let
i = ! * i i *
Start evaluating vs.al‘lplvot a .=O (* parray indexing ¥*)
in parallel p . .
but gsortP (filterP (fn x => x < pivot) a)
. . pval =
dothan filterP (fn x => x = pivot) a
until needed.
pval =

gsortP (filterP (fn x => x > pivot) a)
in
concatP (, concatP (v))

Wait until results are ready before using them. parajelism 12

Manticore

Parallel Cases

datatype 'a bintree = Empty
| Node of 'a * 'a bintree * 'a bintree

fun find any t e =
case t of
Empty => NONE

| Node (elem, left, right) =>
if e = elem then SOME t
else
pcase & of
& => SOME tree
| & => SOME tree
| & => NONE

Parallelism 13

future = promise speculatively forced in parallel

signature FUTURE =
sig

type 'a future

(* Produce a future for a thunk.
Like Promise.delay. *)
val future : (unit -> 'a) -> ’'a future

(* Wait for the future to complete and return the
Like Promise.force. *)
val touch : ’a future -> 'a

(* More advanced features. *)
datatype 'a result = VAL of 'a | EXN of exn

(* Check if the future is complete and get result if so.

val poll : ’'a future -> ’a result option

(* Stop work on a future that won't be needed. *)
val cancel : ’‘a future -> unit

end

Futures: unifying model for Manticore parallel features

result.

*)

Parallelism 14

Futures: timeline visualization 1

let v

end v

Parallelism 15

Futures: timeline visualization 2

let

end

Parallelism 16

pval as future sugar

let pval =

in .. - end
let val = future (fn () => e)
in .. (touch x) .. end

*a bit more: implicitly cancel an untouched future
once it becomes clear it won't be touched.

Parallelism 17

Parray ops as futures: rough idea 1

Suppose we represent parrays as lists* of elements:

[| £ x| x in |1

<P
map touch

(map (fn x =>
future (fn () => X))

)

*not the actual implementation

Parallelism 18

Parray ops as futures: rough idea 2

Suppose we represent parrays as lists* of element futures:

[| £ x| x in |1

-

map (fn x => future
(fn () =>

Key semantic difference 1 vs 27?

*not the actual implementation

(touch x)))

Parallelism 19

Odds and ends

pcase: not just future sugar

— Choice is a distinct primitive* not offered by
futures alone.

Where do execution resources from futures
come from? How are they managed?

Tasks vs futures:
— function calls vs. val bindings.

Forward to concurrency and events...

*at least when implemented well.

Parallelism 20

