
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Parallelism
(and Concurrency)

Parallelism 1

https://cs.wellesley.edu/~cs251/f19/


Parallelism and Concurrency in 251

• Goal: encounter
– essence, key concerns
– non-sequential thinking
– some high-level models
– some mid-to-high-level mechanisms

• Non-goals:
– performance engineering / measurement
– deep programming proficiency
– exhaustive survey of models and mechanisms

Parallelism 2



Eliminate 1 big assumption:
Evaluation happens

as a sequence of ordered steps.

Parallelism 3



Parallelism Concurrency

data / work

data = resources

workers = computations

workers = resources

divided among

share

Use more resources
to complete work faster.

Coordinate access
to shared resources.

Both can be expressed using a variety of primities.
Parallelism 4



Parallelism via Manticore
• Extends SML with language features for 

parallelism/concurrency.
• Mix research vehicle / established models.
• Parallelism patterns:

– data parallelism:
• parallel arrays
• parallel tuples

– task parallelism:
• parallel bindings
• parallel case expressions

• Unifying model:
– futures / tasks

• Mechanism:
– work-stealing

Manticore

Parallelism 5



Parallel Arrays: 'a parray

[| e1, e2, …, en |]

[| elo to ehi by estep |]

[| e | x in elems |]

[| e | x in elems where pred |]

parallel mapping comprehensions

parallel filtering comprehensions

integer ranges

literal parray

Manticore

Parallelism 6



parallel array comprehensions

[| e1 | x in e2 |]

Evaluation rule:
1. Under the current environment, E, evaluate 

e2 to a parray v2.
2. For each element vi in v2, with no constraint 

on relative timing order:
1. Create new environment Ei = x↦vi, E.
2. Under environment Ei, evaluate e1 to a value vi'

3. The result is [| v1', v2', …, vn' |]

Manticore

Parallelism 7



Data Parallelism
many argument data of same type

parallelize
application of same operation
to all data

many result data of same type

no ordering/
interdependence

Parallelism 8



Parallel Map / Filter

fun mapP f xs =
[| f x | x in xs |]

: ('a -> 'b) -> 'a parray -> 'b parray

fun filterP p xs =
[| x | x in xs where p x |]

: ('a -> bool) -> 'a parray -> 'a parray

Manticore

Parallelism 9



Parallel Reduce
fun reduceP f init xs = …

: (('a * 'a) -> 'a) -> 'a -> 'a parray -> 'a

f ( , ) f ( , ) f ( , ) f ( , )

f ( , ) f ( , )

f ( , )

sibling of fold
f must be associative

… … … …

Manticore

Parallelism 10



Task Parallelism

parallelize application
of different operations
within larger computation

some ordering/interdependence
controlled explicitly

Parallelism 11



Parallel Bindings

fun qsortP (a: int parray) : int parray =
if lengthP a <= 1
then a
else

let
val pivot = a ! 0  (* parray indexing *)
pval sorted_lt =

qsortP (filterP (fn x => x < pivot) a)
pval sorted_eq =

filterP (fn x => x = pivot) a
pval sorted_gt =

qsortP (filterP (fn x => x > pivot) a)
in

concatP (sorted_lt, concatP (sorted_eq, sorted_gt))
end

Start evaluating
in parallel
but
don’t wait
until needed.

Wait until results are ready before using them.

sorted_eq sorted_gt

pivot

concatP

sorted_lt

Manticore

Parallelism 12



Parallel Cases
Manticore

datatype 'a bintree = Empty
| Node of 'a * 'a bintree * 'a bintree

fun find_any t e =
case t of

Empty => NONE
| Node (elem, left, right) =>
if e = elem then SOME t
else

pcase find_any left e & find_any right e of

SOME tree & ? => SOME tree
| ? & SOME tree => SOME tree

| NONE & NONE => NONE

Evaluate these in parallel.

If one finishes with SOME, return it
without waiting for the other.

If both finish with NONE, return NONE.
Parallelism 13



Futures: unifying model for Manticore parallel features

signature FUTURE =
sig
type 'a future

(* Produce a future for a thunk.
Like Promise.delay. *)

val future : (unit -> ’a) -> ’a future

(* Wait for the future to complete and return the result.
Like Promise.force. *)

val touch : ’a future -> ’a

(* More advanced features. *)
datatype 'a result = VAL of 'a | EXN of exn

(* Check if the future is complete and get result if so. *)
val poll : ’a future -> ’a result option

(* Stop work on a future that won't be needed. *)
val cancel : ’a future -> unit

end

future = promise speculatively forced in parallel

Parallelism 14



Futures: timeline visualization 1

Parallelism 15

let
val f = future (fn () => e)

in

work

…
(touch f)
…

end

tim
e



Futures: timeline visualization 2

Parallelism 16

let
val f = future (fn () => e)

in

work

…
(touch f)
…

end

tim
e



pval as future sugar
let pval x = e
in  … x …   end

let val x = future (fn () => e)
in  … (touch x) …  end

*a bit more: implicitly cancel an untouched future 
once it becomes clear it won't be touched.

Parallelism 17



Parray ops as futures: rough idea 1

Parallelism 18

[| f x | x in xs |]

map touch
(map (fn x =>

future (fn () => f x))
xs)

Suppose we represent parrays as lists* of elements:

*not the actual implementation



Parray ops as futures: rough idea 2

Parallelism 19

[| f x | x in xs |]

map (fn x => future
(fn () => f (touch x)))

xs

Suppose we represent parrays as lists* of element futures:

*not the actual implementation

Key semantic difference 1 vs 2?



Odds and ends

• pcase: not just future sugar
– Choice is a distinct primitive* not offered by 

futures alone.
• Where do execution resources from futures 

come from? How are they managed?
• Tasks vs futures:
– function calls vs. val bindings.

• Forward to concurrency and events…

Parallelism 20

*at least when implemented well.


