
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

The Plan

Plan 1

https://cs.wellesley.edu/~cs251/f19/

PL = Programming Language

1. What is a PL?

2. What goes into PL design?

3. How is a PL defined?

4. Why study PLs? What will you learn?

Plan 2

Plan 3

What is a Programming Language?

PL = Procedural Lever

A computer is a machine. Our aim is to make the machine
perform some specified actions. With some machines we
might express our intentions by depressing keys, pushing
buttons, rotating knobs, etc. For a computer, we construct a
sequence of instructions (this is a "program") and present this
sequence to the machine.

– Laurence Atkinson, Pascal Programming

Plan 4

PL = Presentation of Logic

… a computer language is not just a way of getting a computer
to perform operations but rather that it is a novel formal
medium for expressing ideas about methodology. Thus,
programs must be written for people to read, and only
incidentally for machines to execute.

– Harold Abelson and Gerald J. Sussman,
Structure and Interpretation of Computer Programs

Plan 5

PL = Problem-solving Lens

A good programming language is a conceptual universe for
thinking about programming.

A language that doesn't affect the way you think about
programming is not worth knowing.

– Alan Perlis

Plan 6

PLContract / API

PL = Precise Laws

Plan 7

Determine what and how abstractions
can be expressed and manipulated.

Implementer /
Designer

User / Client

Big idea #1: Abstraction

-- Wellesley CS 111

Enable precise manual and automated
reasoning about properties of programs.

PL PL PL
PL PL PL
PL PL PL
PL PL PL
PL PL PL

Plan 8

What goes into PL design?

PL design: application / purpose

General computation

Domain-specific computation

Motivating application
Plan 9

Python
FORTRAN

C/C++

Java

Racket ML
Haskell

CommonLisp

Perl

Ruby

JavaScript

Scala
C#

Rust

IDL

CSS

PostScript

HTML
OpenGL LaTeX
Excel

Matlab RDigital Amati JINJA

D3.js

jQuery

Computability
Turing-complete = equivalent to key models of computation

– Turing machine (CS 235)

– (Lambda) λ-calculus (CS 251)

– …

Church-Turing thesis: Turing-complete = computable

⇒ All Turing-complete PLs (roughly, general-purpose PLs or just "PLs")

– have "same" computational "power"; and

– can express all possible computations; but

• the ease, concision, elegance, clarity, modularity, abstractness, efficiency, style,
of these computations may vary radically across such languages.

Plan 10

PL design: goals/values

PL design affects goals/values for programs:

– Correctness, Reliability, Security

– Clarity, Explainability, Learnability, Analyzability, Audibility

– Fairness, Privacy

– Maintainability, Extensibility

– Efficiency (of programs, programmers), Optimizability

– Creativity, Expressivity, Flexibility

– …

Plan 11

"Programming paradigms"
• Imperative: execute step-by-step statements to

change mutable state.
Lens: statements, execution, mutation, side effects.

• Functional: compose functions over immutable data.
Lens: expressions, evaluation, results, composition.

• Object-oriented: pass (typically imperative) messages
between objects.
Lens: behaviors, methods, encapsulation, extension.

• Deductive: query over declarative relationships.
Lens: relations, implications, constraints, satisfiability.

• Plenty more…
Imprecisely defined, overlapping. Most PLs blend a few.

Plan 12

Quicksort

Plan 13

void qsort(int a[], int lo, int hi) {
int h, l, p, t;

if (lo < hi) {
l = lo;
h = hi;
p = a[hi];

do {
while ((l < h) && (a[l] <= p))

l = l+1;
while ((h > l) && (a[h] >= p))

h = h-1;
if (l < h) {

t = a[l];
a[l] = a[h];
a[h] = t;

}
} while (l < h);

a[hi] = a[l];
a[l] = p;

qsort(a, lo, l-1);
qsort(a, l+1, hi);

}
}

Imperative Style
(C; Java would be similar)

Functional Style (SML)

fun qsort [] = []
| qsort (x::xs) =

let
(lt, ge) = List.partition (fn n => n < x) xs

in
(qsort lt) @ (x :: (qsort ge))

end

PL design: dimensions
• First-class values: What can be named, passed as an argument,

returned as a result, stored in a data structure?

• Naming: Do variables/parameters name expressions, values, or
storage cells? How are names declared, referenced, scoped?

• State: What is mutable or immutable?

• Control: Conditionals, pattern matching, loops, exception
handling, continuations, parallelism, concurrency?

• Data: Products (arrays, tuples, records, maps), sums (options,
one-ofs, variants), objects with behavior?

• Types: Static? Dynamic? Polymorphic? Abstract? First-class?

• …

Plan 14

Plan 15

How is a PL defined?

Defining a programming language

Syntax: form of a PL
– Structure of programs: symbols and grammar
– Concrete syntax vs. abstract syntax trees (ASTs)

Semantics: meaning of a PL
– Dynamic Semantics:

Behavior, actions, results of programs when evaluated.

• Evaluation rules: What is the result or effect of evaluating each
language construct? How are these composed?

– Static Semantics:
Properties of programs determined without evaluation.

• Scope rules: to which declaration may a variable reference refer?

• Type rules: is a program well-typed (and therefore legal)?

Plan 16

Syntax (form) vs. Semantics (meaning)

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little brown rabbits sleep soundly.

Plan 17

Concrete syntax: absolute value function
Logo: to abs :n

ifelse :n < 0 [output (0 - :n)] [output :n]
end

JS:
function abs(n) {if (n<0) return -n; else return n;}

Java: static int abs(int n)
{if (n<0) return -n; else return n;}

Python: App Inventor:
def abs(n):

if n < 0:
return -n

else:
return n

Racket: (define abs (lambda (n) (if (< n 0) (- n) n)))

PostScript: /abs {dup 0 lt {0 swap sub} if} def

Forth: : abs dup 0 < if 0 swap - then ;

Plan 18

Abstract Syntax Tree (AST):
absolute value function

Plan 19

varref

return

n

return

intlit

0

relationalExpression

varref

n

conditionalStatement

functionDeclaration

abs
n
condit

ion else
then

body
paramsname

name

name

arithmeticExpression

value

subtract

varref

n
name

value

intlit

0

lessThan

valueopera
tor

operand1

operand2

This AST abstracts the concrete
syntax for the Logo, JavaScript,
and Python definitions. The
other definitions would have
different ASTs.

operand1

operand2opera
tor

Dynamic semantics examples
What is the meaning of the following expression?

(1 + 11) * 10
What is printed by the following program?

a = 1;

b = a + 20;

print(b);

a = 300;

print(b);

count = 0;

fun inc() { count = count + 1; return count; }

fun dbl(ignore, x) { return x + x; }

print(dbl(inc(), inc());

Plan 20

Static semantics example: type checking

Plan 21

Which of the following Java examples can be well-typed (i.e., pass the
type checker)? How do you know? What assumptions are you making?

2 * (3 + 4)

2 < (3 + 4)

2 < True

if (a < b) {
c = a + b;

} else {
c = a * b;

}

if (a) {
c = a + b;

} else {
c = a * b;

}

if (a < b) {
c = a + b;

} else {
c = a > b;

}

public boolean f(int i, boolean b) {
return b && (i > 0);

}

public int g(int i, boolean b) {
return i * (b ? 1 : -1);

}

public int p(int w) {
if (w > 0) { return 2*w; }

}

public int q(int x) { return x > 0; }

public int r(int y) { return g(y, y>0); }

public boolean s(int z) { return f(z); }

A

B

C

D

E

F G

H

I

J

K

L

Static semantics example: termination checking

Plan 22

Which of these Python programs has inputs
for which it does not terminate (runs forever)?def f(x):

return x+1

def g(x):
while True:

pass
return x

def h2(x):
if x <= 0:

return x
else:

return h2(x+1)

def h(x):
while x > 0:

x = x+1
return x

def g2(x):
return g2(x)

def collatz(x):
while x != 1:

if (x % 2) == 0:
x = x/2

else:
x = 3*x + 1

return 1

Static semantics
Properties of programs determined without evaluation.

– Scope: To which declarations do variable references refer?
– Types: What are the types of entities in the program?
– …

Goal: Accept only (and all) safe programs free of various problems.
Will any evaluation of this program ever:

– reference a nonexistent variable?
– index outside an array's bounds? dereference null? divide by zero?
– apply an array operation to an integer?
– coordinate concurrency unsafely?
– access a given object again? surpass a given memory budget?
– leak sensitive information over the network?
– ... not terminate (run forever)? reach a given point in the program?
– …

Reality: Most useful static semantics questions for Turing-complete
languages are uncomputable! (Rice's Theorem, CS 235)

Plan 23

PL implementation
PLs are implemented by metaprograms, programs in an
implementation language that manipulate programs in a
source language.

• An interpreter evaluates a program in the source language.
A processor is an interpreter implemented in physical hardware.

• A compiler translates a program in the source language to a program in
a target language.

• An embedding defines the features of the source (a.k.a. guest)
language directly as data structures, functions, macros, or other
features of a host language.

Plan 24

Program analysis

Automated reasoning about program properties
But isn't that uncomputable?

Program analysis: effective solutions to unsolvable problems™
– Conservative static analysis
– Dynamic analysis
– Hybrid analysis
– Extend the language to make more explicit
– Static semantics = integrate language and analysis

Plan 25

Plan 26

Why study PLs?
What will you learn?

Why study PLs?
Be a more effective programmer and computer scientist:

– Leverage powerful features, idioms, and tools.
– Think critically about PL design trade-offs and their implications for your values.
– Learn, evaluate, compare, choose languages.
– Communicate technical ideas, problems, and solutions precisely.

Approach problem-solving as a language designer / program analyst:
– Problem-solving = designing the language of your problem and its solutions.
– You may not design a general-purpose PL, but you will design a DSL.
– API and library design = language design = DSL.

Broad active area of research:
– Invent better general-purpose programming tools, features, analyses.
– Apply PL mindset to broader problem domains and applications, e.g.:

• Analyze/enforce fairness/non-bias, privacy, security properties.
• High-performance/high-assurance DSLs for machine learning, graphics, Uis, data science.
• Model and control biochemical systems.
• Automated verification of website accessibility compliance.
• Support large-scale systems programming or specialized hardware.

Plan 27

Plan
1. How to Program

– Topics: syntax, dynamic semantics, functional programming
– Lens: Racket

2. What's in a Type
– Topics: static types, data, patterns, abstractions
– Lens: Standard ML

3. When Things Happen
– Topics: evaluation order, parallelism, concurrency
– Lens: Standard ML/Manticore?, Java, …

4. Why a Broader PL Mindset
– Topics: problem decomposition, deductive programming, program

analysis, DSLs
– Lens: Racket, Standard ML, Java, Prolog/Datalog, …

Expect some adjustments.

Plan 28

M
etaprogram

m
ing

Administrivia
Everything is here: https://cs.wellesley.edu/~cs251/

– Material posted ahead of class meetings.
• PYO: Print your own if you like taking notes on slide copies.

– First assignment out soon, due in a week.

– New space: SCI L037 CS Systems Lab, mostly finished…
• Expect a couple hiccups as we iron out a few things.

• Potential experiments with class format dependent on these.

– Expect assignments to require:
• deep thought, sometimes to discover a surprisingly concise solution;

• independently extending / learning ideas beyond lecture coverage.

Learning is an adventure in an unknown land. Explore and experiment!

– Enjoying PLs? Reading group forming soon…

Plan 29

https://cs.wellesley.edu/~cs251/

