CS 251 Fall 2019 WELLESLEY
Principles of Programming Languages \ x }
Ben Wood

The Plan

https://cs.wellesley.edu/~cs251/f19/ Plan 1

https://cs.wellesley.edu/~cs251/f19/

PL = Programming Language

What is a PL?
What goes into PL design?
How is a PL defined?

Why study PLs? What will you learn?

> W hoe

Plan 2

What is a Programming Language?

Plan

= Procedural |_ever

A computer is a machine. Our aim is to make the machine
perform some specified actions. With some machines we
might express our intentions by depressing keys, pushing
buttons, rotating knobs, etc. For a computer, we construct a
sequence of instructions (this is a "program”) and present this
sequence to the machine.

- Laurence Atkinson, Pascal Programming

resentation of Logic

... a computer language is not just a way of getting a computer
to perform operations but rather that it is a nhovel formal
medium for expressing ideas about methodology. Thus,
programs must be written for people to read, and only
incidentally for machines to execute.

- Harold Abelson and Gerald J. Sussman,
Structure and Interpretation of Computer Programs

= Problem-solving L.ens

A good programming language is a conceptual universe for
thinking about programming.

A language that doesn't affect the way you think about
programming is not worth knowing.

— Alan Perlis

PL = Precise Laws

) #1: Abstraction
User / Client Contract / API] ' Implementer/
| PL PL PL] Designer
| PL PL PL ,
PL PL PL
PL PL PL /
PL PL PL
- Wellesley CS 111
Determine what and how abstractions Enable precise manual and automated
can be expressed and manipulated. reasoning about properties of programs.

Plan 7

What goes into PL design?

PL design: application / purpose

General computation

Domain-specific computation

Motivating application

Computability

Turing-complete = equivalent to key models of computation

— Turing machine (CS 235)
— (Lambda) A-calculus (CS 251)

Church-Turing thesis: Turing-complete = computable

= All Turing-complete PLs (roughly, general-purpose PLs or just "PLs")

— have "same" computational "power"; and

— can express all possible computations; out

* the ease, concision, elegance, clarity, modularity, abstractness, efficiency, style,
of these computations may vary radically across such languages.

Plan 10

PL design: goals/values

PL design affects goals/values for programs:
— Correctness, Reliability, Security
— Clarity, Explainability, Learnability, Analyzability, Audibility
— Fairness, Privacy
— Maintainability, Extensibility
— Efficiency (of programs, programmers), Optimizability

— Creativity, Expressivity, Flexibility

"Programming paradigms"”

Imperative: execute step-by-step statements to
change mutable state.
Lens: statements, execution, mutation, side effects.

Functional: compose functions over immutable data.
Lens: expressions, evaluation, results, composition.

Object-oriented: pass (typically imperative) messages
between objects.
Lens: behaviors, methods, encapsulation, extension.

Deductive: query over declarative relationships.
Lens: relations, implications, constraints, satisfiability.

Plenty more...

Imprecisely defined, overlapping. Most PLs blend a few.

void gsort(int a[], int lo, int hi) { QUiCkSO rt

int h, 1, p, t;

if (lo < hi) {

1 = lo;

h = hi; .

p = a[hi]; @3 Imperative Style

do | (C; Java would be similar)
while ((1 < h) && (a[l] <= p))

1 = 1+1;

whil;al i(i_;l) && (a[h] >= p)) Functional Style (SML)

if (1 < h) { ’_‘

t = a[l];
a[l] = a[h]; fun gsort [] = [] % 5
alh] = t; | gsort (x::xs) =
} _ let
} while (1 < h);
(lt, ge) = List.partition (fn n => n < x) xs
alhi] = a[l]; in
alll = pi (gsort 1lt) @ (x :: (gsort ge))
end

gsort(a, lo, 1-1);
gsort(a, 1+1, hi);

PL design: dimensions

* First-class values: What can be named, passed as an argument,
returned as a result, stored in a data structure?

« Naming: Do variables/parameters name expressions, values, or
storage cells? How are names declared, referenced, scoped?

o State: What is mutable or immutable?

* Control: Conditionals, pattern matching, loops, exception
handling, continuations, parallelism, concurrency?

 Data: Products (arrays, tuples, records, maps), sums (options,
one-ofs, variants), objects with behavior?

 TJypes: Static? Dynamic? Polymorphic? Abstract? First-class?

How is a PL defined?

Defining a programming language

Syntax: form of a PL
— Structure of programs: symbols and grammar
— Concrete syntax vs. abstract syntax trees (ASTs)

Semantics: meaning of a PL

— Dynamic Semantics:
Behavior, actions, results of programs when evaluated.

« Evaluation rules: What is the result or effect of evaluating each
language construct? How are these composed?

— Static Semantics:
Properties of programs determined without evaluation.

* Scope rules: to which declaration may a variable reference refer?

* Type rules: is a program well-typed (and therefore legal)?

Syntax (form) vs. Semantics (meaning)

Concrete syntax: absolute value function

Logo: to abs :n
ifelse :n < 0 [output (0 - :n)] [output :n]
end

JS:

function abs(n) {if (n<0) return -n; else return n;}

Java: static int abs(int n)
{if (n<0) return -n; else return n;}

Python: App Inventor:
def abs (n):
if n < O:
return -n
else:
return n

Racket: (define abs (lambda (n) (if (< n 0) (- n) n)))
PostScript: /abs {dup 0 1t {0 swap sub} if} def
Forth: : abs dup 0 < if 0 swap - then ;

Plan

18

' This AST abstracts the concrete
AbStraCt Syntax Tree (AST) syntax for the Logo, JavaScript,

: ' and Python definitions. The ,
abSOIUte Value funCtlon . other definitions would have
functionDeclaration . different ASTs.
bog, T
e
abs conditionalStatement

relationalExpression return return
tof O\ L
erd S < value
oP Q % value
§ 0
lessThan varref | & intlit arithmeticExpression
y varref
of o .
name ot .
| ope' =, ;> name
e
n 0 = n
subtract intlit | == | varref
value name

0 n

Dynamic semantics examples

What is the meaning of the following expression?
(1 + 11) * 10
What is printed by the following program?

a = 1;

b =a + 20;
print (b) ;
a = 300;
print (b) ;
count = 0;
fun inc() { count = count + 1; return count; }

fun dbl (ignore, x) { return x + x; }

print (dbl (1nc (), inc());

Static semantics example: type checking

Which of the following Java examples can be well-typed (i.e., pass the
type checker)? How do you know? What assumptions are you making?

Al 2

*

(3 + 4)

B| 2

<

(3 + 4)

Cl 2 < True

F

if (a) A G
c = a + b;

} else {
cC = a * b;

) H

public boolean f (int 1,
return b && (1 > 0);
}

boolean b)

{

public int g(int 1,
return 1 * (b ? 1

}

boolean Db) {
-1);

public int p(int w) {
if (w > 0)
}

{ return 2*w; }

J | public int g(int x)

{ return x > 0; }

K| public int r(int vy)

{ return g (y,

y>0) ;

}

[| public boolean s (int z)

{ return f£(z), }

Static semantics example: termination checking

def f (x):
return x+1

def g (x):
while True:
pass
return x

Which of these Python programs has inputs
for which it does not terminate (runs forever)?

def g2 (x):
return g2 (x)

def h (x):
while x > 0O:
x = x+1
return x

def h2 (x) :
if x <= 0:
return x
else:
return h2 (x+1)

def collatz (x):
while x != 1:
if (x % 2) ==
X = x/2
else:
X = 3*x + 1
return 1

O:

Static semantics

Properties of programs determined without evaluation.

— Scope: To which declarations do variable references refer?
— Types: What are the types of entities in the program?

Goal: Accept only (and all) safe programs free of various problems.
Will any evaluation of this program ever:

reference a nonexistent variable?

index outside an array's bounds? dereference null? divide by zero?
apply an array operation to an integer?

coordinate concurrency unsafely?

access a given object again? surpass a given memory budget?
leak sensitive information over the network?

... hot terminate (run forever)? reach a given point in the program?

Reality: Most useful static semantics questions for Turing-complete
languages are uncomputable! (Rice's Theorem, CS 235)

PL implementation

PLs are implemented by metaprograms, programs in an
Implementation language that manipulate programs in a
source language.

e An evaluates a program in the source language.
A processor is an interpreter implemented in physical hardware.

e A translates a program in the source language to a program in
a target language.

 An defines the features of the source (a.k.a. guest)
language directly as data structures, functions, macros, or other
features of a host language.

Program analysis

Automated reasoning about program properties

But isn't that uncomputable?

Program analysis: effective solutions to unsolvable problems™
— Conservative static analysis
— Dynamic analysis
— Hybrid analysis
— Extend the language to make more explicit
— Static semantics = integrate language and analysis

Why study PLs?
What will you learn?

Why study PLs?

Be a more effective programmer and computer scientist:
— Leverage powerful features, idioms, and tools.
— Think critically about PL design trade-offs and their implications for your values.
— Learn, evaluate, compare, choose languages.
— Communicate technical ideas, problems, and solutions precisely.

Approach problem-solving as a language designer / program analyst:
— Problem-solving = designing the language of your problem and its solutions.
— You may not design a general-purpose PL, but you will design a DSL.
— APl and library design = language design = DSL.

Broad active area of research:
— Invent better general-purpose programming tools, features, analyses.

— Apply PL mindset to broader problem domains and applications, e.g.:
* Analyze/enforce fairness/non-bias, privacy, security properties.
* High-performance/high-assurance DSLs for machine learning, graphics, Uis, data science.
* Model and control biochemical systems.
* Automated verification of website accessibility compliance.
* Support large-scale systems programming or specialized hardware.

Plan

1. How to Program
— Topics: syntax, dynamic semantics, functional programming

— Lens: Racket

2. What's in a Type
— Topics: static types, data, patterns, abstractions
— Lens: Standard ML

3. When Things Happen
— Topics: evaluation order, parallelism, concurrency
— Lens: Standard ML/Manticore?, Java, ...

4. Why a Broader PL Mindset

— Topics: problem decomposition, deductive programming, program
analysis, DSLs

— Lens: Racket, Standard ML, Java, Prolog/Datalog, ...

Expect some adjustments.

guiwwesgoisdela|n

Administrivia

Everything is here: https.//cs.wellesley.edu/~cs251/

— Material posted ahead of class meetings.

* PYO: Print your own if you like taking notes on slide copies.
— First assignment out soon, due in a week.
— New space: SCI LO37 CS Systems Lab, mostly finished...
e Expect a couple hiccups as we iron out a few things.
* Potential experiments with class format dependent on these.
— EXxpect assignments to require:
* deep thought, sometimes to discover a surprisingly concise solution;

* independently extending / learning ideas beyond lecture coverage.

Learning is an adventure in an unknown land. Explore and experiment!

— Enjoying PLs? Reading group forming soon...

https://cs.wellesley.edu/~cs251/

