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PL = Programming Language

1. What is a PL?

2. What goes into PL design?

3. How is a PL defined?

4. Why study PLs? What will you learn?
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What is a Programming Language?



PL = Procedural Lever

A computer is a machine. Our aim is to make the machine 
perform some specified actions.  With some machines we 
might express our intentions by depressing keys, pushing 
buttons, rotating knobs, etc.  For a computer, we construct a 
sequence of instructions (this is a "program") and present this 
sequence to the machine.

– Laurence Atkinson, Pascal Programming
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PL = Presentation of Logic

… a computer language is not just a way of getting a computer 
to perform operations but rather that it is a novel formal 
medium for expressing ideas about methodology. Thus, 
programs must be written for people to read, and only 
incidentally for machines to execute.

– Harold Abelson and Gerald J. Sussman,
Structure and Interpretation of Computer Programs
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PL = Problem-solving Lens

A good programming language is a conceptual universe for 
thinking about programming.

A language that doesn't affect the way you think about 
programming is not worth knowing.

– Alan Perlis
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PLContract / API

PL = Precise Laws
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Determine what and how abstractions 
can be expressed and manipulated.

Implementer / 
Designer

User / Client

Big idea  #1: Abstraction

-- Wellesley CS 111

Enable precise manual and automated 
reasoning about properties of programs.

PL PL PL
PL PL PL
PL PL PL
PL PL PL
PL PL PL
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What goes into PL design?



PL design: application / purpose

General computation

Domain-specific computation

Motivating application
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Python
FORTRAN

C/C++

Java

Racket ML
Haskell

CommonLisp

Perl

Ruby

JavaScript

Scala
C#

Rust

IDL

CSS

PostScript

HTML
OpenGL LaTeX
Excel

Matlab RDigital Amati JINJA

D3.js

jQuery



Computability
Turing-complete = equivalent to key models of computation

– Turing machine (CS 235)

– (Lambda) λ-calculus (CS 251)

– …

Church-Turing thesis: Turing-complete = computable

⇒ All Turing-complete PLs (roughly, general-purpose PLs or just "PLs")

– have "same" computational "power"; and

– can express all possible computations; but

• the ease, concision, elegance, clarity, modularity, abstractness, efficiency, style, 
of these computations may vary radically across such languages.
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PL design: goals/values

PL design affects goals/values for programs:

– Correctness, Reliability, Security

– Clarity, Explainability, Learnability, Analyzability, Audibility

– Fairness, Privacy

– Maintainability, Extensibility

– Efficiency (of programs, programmers), Optimizability

– Creativity, Expressivity, Flexibility

– …
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"Programming paradigms"
• Imperative: execute step-by-step statements to 

change mutable state.
Lens: statements, execution, mutation, side effects.

• Functional: compose functions over immutable data.
Lens: expressions, evaluation, results, composition.

• Object-oriented: pass (typically imperative) messages 
between objects. 
Lens: behaviors, methods, encapsulation, extension.

• Deductive: query over declarative relationships. 
Lens: relations, implications, constraints, satisfiability.

• Plenty more…
Imprecisely defined, overlapping. Most PLs blend a few.
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Quicksort
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void qsort(int a[], int lo, int hi) {
int h, l, p, t;

if (lo < hi) {
l = lo;
h = hi;
p = a[hi];

do {
while ((l < h) && (a[l] <= p)) 

l = l+1;
while ((h > l) && (a[h] >= p))

h = h-1;
if (l < h) {

t = a[l];
a[l] = a[h];
a[h] = t;

}
} while (l < h);

a[hi] = a[l];
a[l] = p;

qsort( a, lo, l-1 );
qsort( a, l+1, hi );

}
}

Imperative Style
(C; Java would be similar)

Functional Style (SML)

fun qsort [] = []
| qsort (x::xs) =

let
(lt, ge) = List.partition (fn n => n < x) xs

in
(qsort lt) @ (x :: (qsort ge))

end



PL design: dimensions
• First-class values: What can be named, passed as an argument, 

returned as a result, stored in a data structure?

• Naming: Do variables/parameters name expressions, values, or 
storage cells? How are names declared, referenced, scoped?

• State: What is mutable or immutable?

• Control: Conditionals, pattern matching, loops, exception 
handling, continuations, parallelism, concurrency?

• Data: Products (arrays, tuples, records, maps), sums (options, 
one-ofs, variants), objects with behavior?

• Types:  Static? Dynamic? Polymorphic? Abstract? First-class?

• … 
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How is a PL defined?



Defining a programming language

Syntax: form of a PL 
– Structure of programs: symbols and grammar
– Concrete syntax vs. abstract syntax trees (ASTs)

Semantics: meaning of a PL 
– Dynamic Semantics:

Behavior, actions, results of programs when evaluated.

• Evaluation rules: What is the result or effect of evaluating each 
language construct? How are these composed? 

– Static Semantics:
Properties of programs determined without evaluation.

• Scope rules: to which declaration may a variable reference refer?

• Type rules: is a program well-typed (and therefore legal)?
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Syntax (form) vs. Semantics (meaning)

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little brown rabbits sleep soundly. 
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Concrete syntax: absolute value function
Logo: to abs :n

ifelse :n < 0 [output (0 - :n)] [output :n]
end

JS:
function abs(n) {if (n<0) return -n; else return n;}

Java: static int abs(int n)
{if (n<0) return -n; else return n;}

Python:                             App Inventor: 
def abs(n):

if n < 0:
return -n

else: 
return n

Racket: (define abs (lambda (n) (if (< n 0) (- n) n)))

PostScript: /abs {dup 0 lt {0 swap sub} if} def

Forth: : abs dup 0 < if 0 swap - then ;
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Abstract Syntax Tree (AST):
absolute value function

Plan 19

varref

return

n

return

intlit

0

relationalExpression

varref

n

conditionalStatement

functionDeclaration
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condit

ion else
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body
paramsname

name

name

arithmeticExpression

value

subtract

varref

n
name

value

intlit

0

lessThan

valueopera
tor

operand1

operand2

This AST abstracts the concrete 
syntax for the Logo, JavaScript, 
and Python definitions.  The 
other definitions would have 
different ASTs.

operand1

operand2opera
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Dynamic semantics examples
What is the meaning of the following expression?

(1 + 11) * 10
What is printed by the following program? 

a = 1;

b = a + 20;

print(b);

a = 300;

print(b);

count = 0;

fun inc() { count = count + 1; return count; }

fun dbl(ignore, x) { return x + x; }

print(dbl(inc(), inc());
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Static semantics example: type checking
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Which of the following Java examples can be well-typed (i.e., pass the 
type checker)?  How do you know? What assumptions are you making?

2 * (3 + 4)

2 < (3 + 4)

2 < True

if (a < b) {
c = a + b; 

} else {
c = a * b;

}

if (a) {
c = a + b; 

} else {
c = a * b;

}

if (a < b) {
c = a + b; 

} else {
c = a > b;

}

public boolean f(int i, boolean b) {
return b && (i > 0);

}

public int g(int i, boolean b) {
return i * (b ? 1 : -1);

}

public int p(int w) {
if (w > 0) { return 2*w; }

}

public int q(int x) { return x > 0; }

public int r(int y) { return g(y, y>0); }

public boolean s(int z) { return f(z); }

A

B

C

D

E

F G

H

I

J

K
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Static semantics example: termination checking
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Which of these Python programs has inputs
for which it does not terminate (runs forever)?def f(x):

return x+1

def g(x):
while True:

pass
return x

def h2(x):
if x <= 0:

return x
else: 

return h2(x+1)

def h(x):
while x > 0:

x = x+1
return x

def g2(x):
return g2(x)

def collatz(x):
while x != 1:

if (x % 2) == 0:
x = x/2

else: 
x = 3*x + 1

return 1



Static semantics
Properties of programs determined without evaluation. 

– Scope: To which declarations do variable references refer?
– Types: What are the types of entities in the program?
– …

Goal: Accept only (and all) safe programs free of various problems.
Will any evaluation of this program ever:

– reference a nonexistent variable?
– index outside an array's bounds? dereference null? divide by zero?
– apply an array operation to an integer?
– coordinate concurrency unsafely?
– access a given object again? surpass a given memory budget?
– leak sensitive information over the network?
– ... not terminate (run forever)? reach a given point in the program?
– …

Reality: Most useful static semantics questions for Turing-complete 
languages are uncomputable! (Rice's Theorem, CS 235)
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PL implementation
PLs are implemented by metaprograms, programs in an 
implementation language that manipulate programs in a 
source language.

• An interpreter evaluates a program in the source language.
A processor is an interpreter implemented in physical hardware.

• A compiler translates a program in the source language to a program in 
a target language.

• An embedding defines the features of the source (a.k.a. guest) 
language directly as data structures, functions, macros, or other 
features of a host language.
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Program analysis

Automated reasoning about program properties
But isn't that uncomputable?

Program analysis: effective solutions to unsolvable problems™
– Conservative static analysis
– Dynamic analysis
– Hybrid analysis
– Extend the language to make more explicit
– Static semantics = integrate language and analysis
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Why study PLs?
What will you learn?



Why study PLs?
Be a more effective programmer and computer scientist:

– Leverage powerful features, idioms, and tools.
– Think critically about PL design trade-offs and their implications for your values.
– Learn, evaluate, compare, choose languages.
– Communicate technical ideas, problems, and solutions precisely.

Approach problem-solving as a language designer / program analyst:
– Problem-solving = designing the language of your problem and its solutions.
– You may not design a general-purpose PL, but you will design a DSL.
– API and library design = language design = DSL.

Broad active area of research:
– Invent better general-purpose programming tools, features, analyses.
– Apply PL mindset to broader problem domains and applications, e.g.:

• Analyze/enforce fairness/non-bias, privacy, security properties.
• High-performance/high-assurance DSLs for machine learning, graphics, Uis, data science.
• Model and control biochemical systems.
• Automated verification of website accessibility compliance.
• Support large-scale systems programming or specialized hardware.
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Plan
1. How to Program

– Topics: syntax, dynamic semantics, functional programming
– Lens: Racket

2. What's in a Type
– Topics: static types, data, patterns, abstractions
– Lens: Standard ML

3. When Things Happen
– Topics: evaluation order, parallelism, concurrency
– Lens: Standard ML/Manticore?, Java, …

4. Why a Broader PL Mindset
– Topics: problem decomposition, deductive programming, program 

analysis, DSLs
– Lens: Racket, Standard ML, Java, Prolog/Datalog, …

Expect some adjustments.
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Administrivia
Everything is here: https://cs.wellesley.edu/~cs251/

– Material posted ahead of class meetings.
• PYO: Print your own if you like taking notes on slide copies.

– First assignment out soon, due in a week.

– New space: SCI L037 CS Systems Lab, mostly finished…
• Expect a couple hiccups as we iron out a few things.

• Potential experiments with class format dependent on these.

– Expect assignments to require:
• deep thought, sometimes to discover a surprisingly concise solution;

• independently extending / learning ideas beyond lecture coverage.

Learning is an adventure in an unknown land. Explore and experiment!

– Enjoying PLs? Reading group forming soon…
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