WELLESLEY

A4

CS 251 Fall 2019
Principles of Programming Languages
Ben Wood

CS 251 Part 1.
How to Program

https://cs.wellesley.edu/~cs251/f19/xpressions, Bindings, Meta-language

0

WELLESLEY

A\

CS 251 Fall 2019
Principles of Programming Languages

Ben Wood

Defining Racket:
Expressions and Bindings

via the meta-language of PL definitions

https://cs.wellesley.edu/~cs251/f19/xpressions, Bindings, Meta-language

1

Topics / Goals

1. Basic language forms and evaluation model.

2. Foundations of defining syntax and semantics.
— Informal descriptions (English)

— Formal descriptions (meta-language):
* Grammars for syntax.

» Judgments, inference rules, and derivations
for big-step operational semantics.

3. Learn Racket.

Expressions, Bindings, Meta-language

2

From Al to language-oriented programming

LISP: List Processing language, 1950s-60s, MIT Al Lab.
Advice Taker: represent logic as data, not just as a program.
Metaprogramming and programs as data:

« Symbolic computation (not just number crunching)
* Programs that manipulate logic (and run it too)

Scheme: child of Lisp, 1970s, MIT Al Lab.
Still motivated by Al applications, became more "functional" than Lisp.
Important design changes/additions/cleanup:
simpler naming and function treatment
lexical scope
first-class continuations
tail-call optimization, ...

Racket: child of Scheme, 1990s-2010s, PLT group.

Revisions to Scheme for:
Rapid implementation of new languages.
Education.

Became Racket in 2010.

Expressions, Bindings, Meta-language

3

Defining Racket

To define each new language feature:

— Define its syntax.
How is it written?

— Define its dynamic semantics as evaluation rules.
How is it evaluated?

Features
1. Expressions
* A few today, more to come.
2. Bindings
3. That's all!
* A couple more advanced features later.

Expressions, Bindings, Meta-language

4

PL design/implementation: layers

primitive values,
data types

syntactic sugar

standard libraries

user libraries

Expressions, Bindings, Meta-language 5

Values

Expressions that cannot be evaluated further.

Syntax:
Numbers: 251 240 301
Booleans: #t #£
Evaluation:

Values evaluate to themselves.

Expressions, Bindings, Meta-language

6

Addition expression

Syntax: (+ el e2)

— Parentheses required: no extras, no omissions.
— el and e2 stand in for any expressions.

— Note prefix notation. .
p Note recursive
structure!

Examples:
(+ 251 240)
(+ #t 251)

(+ (+ 251 240) 301)

Expressions, Bindings, Meta-language 7

Addition expression

Not quite!
Syntax: (+ el e2)

Note recursive
Evaluation: structurel

1. Evaluate el to a value v1.
2. Evaluate e2 to a value v2.
3. Return the arithmetic sum of vl + v2.

Expressions, Bindings, Meta-language 8

Addition expression

Syntax: (+ el e2)

Evaluation: [Dynamic type checking]
1. Evaluate el to a value v1.

2. Evaluate e2 to a value v2.

3. If vl and v2 are numbers then
return the arithmetic sum of vl + v2.

Otherwise there is a type error.

Expressions, Bindings, Meta-language 9

The language of languages

Because it pays to be precise.

Syntax:
— Formal grammar notation
— Conventions for writing syntax patterns

Expressions, Bindings, Meta-language 10

A grammar formalizes syntax.

non-terminal

ymbols
e’ii= vho Non-terminal e
(+ e e) < has 2 productions,
el f separated by "|".
‘ Grammar meta-syntax. ‘
terminal
symbols

"An expression e is one of:
— Any value v
— Any addition expression (+ e e) of any two
expressions"

Expressions, Bindings, Meta-language 11

Racket syntax so far

Expressions

O)

Literal Values

#f | #t |
Number values

=0 | 1 | 2 |

Expressions, Bindings, Meta-language 12

Notation conventions

Outside the grammar:

* Use of a non-terminal symbol, such as e, in syntax
examples and evaluation rules means any expression
matching one of the productions of e in the grammatr.

* Two uses of e in the same context are aliases; they mean
the same expression.

* Subscripts (or suffixes) distinguish separate instances of a
single non-terminal, eg,, e, ,, ..., e, 0r el, e2, ..., en.

Expressions, Bindings, Meta-language 13

The language of languages

Because it pays to be precise.

Semantics:

— Judgments:
« formal assertions, like functions

— Inference rules:

* implications between judgments, like cases of functions

— Derivations:

» deductions based on rules, like applying functions

Expressions, Bindings, Meta-language 14

Judgments and rules formalize semantics.

Judgment|e | v
means "expression e evaluates to value v."

It is implemented by inference rules for different cases:

value rule: - [value]

- v | v
addition rule:

ifel|nl

ande2 | n2 el | nl

and n is the arithmetic sum e2 | n2

of n1 and n2 n = nl + n2
then (+ele2) | n [add]

(+ el e2) | n

Expressions, Bindings, Meta-language 15

all premises
the conclusion
Inference rule notation and

Inference rules

Axiom (no premises)
Bar is optional for axioms. |

concuson | ———— [value
v] v
[l e

Number values, not just any values.
| Models dynamic type checking.

. el | nl © "v is the arithmetic sum

zif?—» e2 l n2 ¥ -1 of the numbers n1 and n2."

P (not Racket syntax)
n = nl + n2

jac)

Expressions, Bindings, Meta-language 16

Evaluation derivations

An evaluation derivation is a "proof" that an expression
evaluates to a value using the evaluation rules.
(+ 3 (+ 5 4)) | 12 bythe addition rule because:

— 3 | 3 Dbythe value rule, where 3 is a number

— and (+ 5 4) | 9 bythe addition rule, where 9 is a number,
because:

* 5 | 5 bythe value rule, where 5 is a number
* and 4 | 4 bythe value rule, where 4 is a number
* and 9 is the sum of 5 and 4

— and 12 isthesumof 3 and 9.

Expressions, Bindings, Meta-language 17

Evaluation derivations

Rules defining the evaluation judgment

Adding vertical bars
helps clarify nesting.

v_iv [value]

el | nl
3 | 3 [value] e2 | n2
) = nl 2
‘{15 | 5 [value] (’: elnezj In [add]
4 | 4 [value]
9 =5+ 4
[add]
(+54)] 9
12 =3 + 9 [add]

(+ 3 (+5 4))] 12

Expressions, Bindings, Meta-language 18

Errors are modeled by “stuck” derivations.

How to evaluate
(+ (+ 1 2) (+ 5 #£))?

How to evaluate
(+ #t (+ 5 4))?

#t | n

[add] L

Stuck. Can’t apply the [add] rule
because there is no rule that
allows #t to evaluate to a number.

Stuck. Can’t apply the [add] rule
because there is no rule that
allows #t to evaluate to a number.

Expressions, Bindings, Meta-language 19

Other number expressions

Similar syntax and evaluation for:
+ - * / quotient < > <= >= =
Some small differences.

Build syntax and evaluation rules for:
quotient and >

Conditional if expressions

Syntax: (if el e2 e3)

Evaluation:
1. Evaluate el to avalue v1.
2. If vl is not the value #f then

evaluate e2 and return the result

otherwise
evaluate e3 and return the result

Evaluation rules for i f expressions.

el | vl
e2 | v2
vl is not #f£f

(1f el e2 e3) | v2

[if nonfalse]

el | #f
e3 | v3

(if el e2 e3) | v3

[if false]

Notice: at most one of these rules can have its premises satisfied!

if

if expressions are expressions.
Racket has no "statements!"

(if (< 9 (- 251 240))
(+ 4 (* 3 2))
(+ 4 (* 3 3)))

(+ 4 (* 3 (if (< 9 (- 251 240))
(if (if (<1 2) (> 4 3) (> 5 6))

(+ 7 8)
(* 9 10)

2 3)))

1 f expression evaluation

Will either of these expressions result in an
error (stuck derivation) when evaluated?

(if (> 251 240) 251 (/ 251 0))

(if #f (+ #t 251) 251)

Language design choice: i f semantics

el | vl
e2 | v2
vl is not #f

(if el e2 e3) | v2

[if nonfalse]

el | #t
e2 | v2
. [if true]
(if el e2 e3) | v2
Variables and environments More Racket syntax
How do we know the value of a variable? Bi”f“.”_gs et
(define x (+ 1 2)) ::= (define)
(define y (* 4 x)) .
) . Expressions
define diff (- X .
ot ine S 2:= v | o+) | .| (if

(define test (< x diff))
(if test (+ (* x y) diff) 17)
Keep a dynamic environment:

— A sequence of bindings mapping identifier (variable
name) to value.

— “Context” for evaluation, used in evaluation rules.

Literal Values (booleans, numbers)
c:= #f | #t |

Identifiers (variable names)
(see valid identifier explanation)

Dynamic environments

Grammar for environment notation:
= . (empty environment)
| — v, (one binding, rest of environment)

where:
* xis any legal variable identifier
. is any value

Concrete example:

num +— 17, absZero — =273, true — #t,

Abstract example:

xl — vl, x2 — V2, .., Xn — vn,

Expressions, Bindings, Meta-language 28

Variable reference expressions

Syntax: X
x is any identifier

Evaluation rule:

Look up x in the current environment, E, and return
the value, v, to which x is bound. If there is no binding
for x, a hame error occurs.

Search from most to least recent (left to right).
ErFe | v
Revised expression E(x) = v
evaluation judgment — [var]

uses environment. Erx | vV

Expressions, Bindings, Meta-language 29

Expression evaluation rules
: EFx |V
must pass the environment.
E F e2 | n2
= n = nl + n2
EE) 2V an [add]
ErFx | vV E F(+el e2) | n

EFel | vl
EFe2 | v2
vl is not #f

[if nonfalse]
EF (if el e2 e3) | v2

E + el | #f
EF e3 | v3

if false
E F (if el e2 e3)lv3[]

Expressions, Bindings, Meta-language 30

Derivation with environments

LetE = test — #t, diff — 9, y — 12, x — 3

E + test |#t |
EFx]3 [var]
EFO5]5 [
E H(* x 5) |15
E + diff |9 [var]
E - (+ (* x 5) diff) | 24
E F (if test (+ (* x 5) diff) 17) | 24

var]

value]

[mult]

[add]

[if nonfalse]

Expressions, Bindings, Meta-language 31

define bindings

Syntax: (define x e)
define is a keyword, x is any identifier, e is any expression

Evaluation rule:
1. Under the current environment, E, evaluate e to a value v.

2. Produce a new environment, E ', by extending the current
environment, E, with the binding x + v.

Erelv
E' = x+ v, E

‘E F bl e

[define]

E F (define x e) U e

Expressions, Bindings, Meta-language 32

Environment example

; EO = .
(define x (+ 1 2))
; E1l = x — 3, . (abbreviated ; write as in
text)
(define y (* 4 x))
; E2 =y — 12, x +— 3 (mostrecent binding first)
(define diff (- y x))
; E3 = diff — 9, vy — 12, x +— 3
(define test (< x diff))
; E4 = test — #t, diff — 9, y — 12, x — 3
(if test (+ (* x 5) diff) 17)
(environment here is still E4)

Expressions, Bindings, Meta-language 33

Racket identifiers

Most character sequences are allowed as identifiers, except:

— those containing
* whitespace
* special characters () [1{}", " ;#]|\
— identifiers syntactically indistinguishable from numbers (e.g., —45)

Fairgame:! @ $ & " & * . — + < =>7?2/
— myLongName, my_ long name, my-long-name
— is_atb<c*d-e?

— 64bits

Why are other languages less liberal with legal identifiers?

Expressions, Bindings, Meta-language 34

Big-step vs. small-step semantics

We defined a big-step operational semantics: evaluate "all at once"

A small-step operational semantics defines step by step evaluation:
(- (* (+ 2 3) 9) (/ 18 6))
— (- (*59) (/ 18 6))
— (- 45 (/ 18 6))

— (- 45 3)
— 42

A small-step view helps define evaluation orders later in 251.

Expressions, Bindings, Meta-language 35

