
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

CS 251 Part 1:
How to Program

Expressions, Bindings, Meta-language 0

CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Defining Racket:
Expressions and Bindings

via the meta-language of PL definitions

Expressions, Bindings, Meta-language 1

Topics / Goals

1. Basic language forms and evaluation model.
2. Foundations of defining syntax and semantics.

– Informal descriptions (English)
– Formal descriptions (meta-language):

• Grammars for syntax.
• Judgments, inference rules, and derivations

for big-step operational semantics.

3. Learn Racket. (an opinionated subset)
– Not always idiomatic or the full story. Setup for transition to Standard ML.

Expressions, Bindings, Meta-language 2

From AI to language-oriented programming

LISP: List Processing language, 1950s-60s, MIT AI Lab.
Advice Taker: represent logic as data, not just as a program.
Metaprogramming and programs as data:

• Symbolic computation (not just number crunching)
• Programs that manipulate logic (and run it too)

Scheme: child of Lisp, 1970s, MIT AI Lab.
Still motivated by AI applications, became more "functional" than Lisp.
Important design changes/additions/cleanup:

• simpler naming and function treatment
• lexical scope
• first-class continuations
• tail-call optimization, …

Racket: child of Scheme, 1990s-2010s, PLT group.
Revisions to Scheme for:

• Rapid implementation of new languages.
• Education.

Became Racket in 2010.

3Expressions, Bindings, Meta-language

Defining Racket
To define each new language feature:

– Define its syntax.
How is it written?

– Define its dynamic semantics as evaluation rules.
How is it evaluated?

Features
1. Expressions

• A few today, more to come.
2. Bindings
3. That's all!

• A couple more advanced features later.

Expressions, Bindings, Meta-language 4

PL design/implementation: layers

Expressions, Bindings, Meta-language 5

kernel

syntactic sugar

primitive values,
data types

standard libraries

user libraries

Values

Expressions that cannot be evaluated further.

Syntax:
Numbers: 251 240 301

Booleans: #t #f

…

Evaluation:
Values evaluate to themselves.

Expressions, Bindings, Meta-language 6

Addition expression

Syntax: (+ e1 e2)

– Parentheses required: no extras, no omissions.
– e1 and e2 stand in for any expressions.
– Note prefix notation.

Examples:
(+ 251 240) (+ (+ 251 240) 301)

(+ #t 251)

Note recursive
structure!

Expressions, Bindings, Meta-language 7

Addition expression

Syntax: (+ e1 e2)

Evaluation:
1. Evaluate e1 to a value v1.
2. Evaluate e2 to a value v2.
3. Return the arithmetic sum of v1 + v2.

Note recursive
structure!

Not quite!

Expressions, Bindings, Meta-language 8

Addition expression

Syntax: (+ e1 e2)

Evaluation:
1. Evaluate e1 to a value v1.
2. Evaluate e2 to a value v2.
3. If v1 and v2 are numbers then

return the arithmetic sum of v1 + v2.
Otherwise there is a type error.

Dynamic type checking

Expressions, Bindings, Meta-language 9

The language of languages !

Syntax:
– Formal grammar notation
– Conventions for writing syntax patterns

Expressions, Bindings, Meta-language 10

Because it pays to be precise.
A grammar formalizes syntax.

e ::= v

| (+ e e)

"An expression e is one of:
– Any value v
– Any addition expression (+ e e) of any two

expressions"
Expressions, Bindings, Meta-language 11

non-terminal
symbols

terminal
symbols

Non-terminal e
has 2 productions,
separated by "|".

Grammar meta-syntax.

Racket syntax so far

Expressions
e ::= v

| (+ e e)

Literal Values
v ::= #f | #t | n

Number values
n ::= 0 | 1 | 2 | …

Expressions, Bindings, Meta-language 12

Notation conventions

Outside the grammar:

• Use of a non-terminal symbol, such as e, in syntax
examples and evaluation rules means any expression
matching one of the productions of e in the grammar.

• Two uses of e in the same context are aliases; they mean
the same expression.

• Subscripts (or suffixes) distinguish separate instances of a
single non-terminal, e.g., e1, e2, …, en or e1, e2, …, en.

Expressions, Bindings, Meta-language 13

The language of languages !

Syntax:
– Formal grammar notation
– Conventions for writing syntax patterns

Semantics:
– Judgments:

• formal assertions, like functions

– Inference rules:
• implications between judgments, like cases of functions

– Derivations:
• deductions based on rules, like applying functions

Expressions, Bindings, Meta-language 14

Because it pays to be precise.
Judgments and rules formalize semantics.

Judgment e ↓ v
means "expression e evaluates to value v."

It is implemented by inference rules for different cases:
value rule:
addition rule:

if e1 ↓ n1
and e2 ↓ n2
and n is the arithmetic sum

of n1 and n2
then (+ e1 e2) ↓ n

…
Expressions, Bindings, Meta-language 15

[value]v ↓ v

e1 ↓ n1
e2 ↓ n2
n = n1 + n2

(+ e1 e2) ↓ n
[add]

Inference rules

16

[value]
v ↓ v

Axiom (no premises)
Bar is optional for axioms.

e1 ↓ n1
e2 ↓ n2
n = n1 + n2

(+ e1 e2) ↓ n
[add]

Premises

Conclusion

Rule name

"v is the arithmetic sum
of the numbers n1 and n2."
(not Racket syntax)

Conclusion

Number values, not just any values.
Models dynamic type checking.

Rule name

Expressions, Bindings, Meta-language

If all premises hold
then the conclusion holds.

Inference rule notation and meaning

Evaluation derivations

An evaluation derivation is a "proof" that an expression
evaluates to a value using the evaluation rules.
(+ 3 (+ 5 4)) ↓ 12 by the addition rule because:

– 3 ↓ 3 by the value rule, where 3 is a number

– and (+ 5 4) ↓ 9 by the addition rule , where 9 is a number,
because:

• 5 ↓ 5 by the value rule, where 5 is a number

• and 4 ↓ 4 by the value rule, where 4 is a number

• and 9 is the sum of 5 and 4

– and 12 is the sum of 3 and 9 .

17Expressions, Bindings, Meta-language

Evaluation derivations

18

3 ↓ 3 [value]
5 ↓ 5 [value]
4 ↓ 4 [value]
9 = 5 + 4

(+ 5 4) ↓ 9

12 = 3 + 9

(+ 3 (+ 5 4)) ↓ 12

[add]

[add]

Expressions, Bindings, Meta-language

e ↓ v

Rules defining the evaluation judgment

Adding vertical bars
helps clarify nesting.

[value]
v ↓ v

e1 ↓ n1
e2 ↓ n2
n = n1 + n2

(+ e1 e2) ↓ n
[add]

Errors are modeled by “stuck” derivations.

19

Stuck. Can’t apply the [add] rule
because there is no rule that
allows #t to evaluate to a number.

How to evaluate
(+ #t (+ 5 4))?

How to evaluate
(+ (+ 1 2) (+ 5 #f))?

1 ↓ 1 [value]
2 ↓ 2 [value]
3 = 1 + 2

(+ 1 2) ↓ 3

5 ↓ 5 [value]
#f ↓ n

Stuck. Can’t apply the [add] rule
because there is no rule that
allows #t to evaluate to a number.

Expressions, Bindings, Meta-language

#t ↓ n

5 ↓ 5 [value]

4 ↓ 4 [value]

9 = 5 + 4

(+ 5 4) ↓ 9
[add]

[add]

[add] [add]

Other number expressions

Similar syntax and evaluation for:
+ - * / quotient < > <= >= =

Some small differences.
Build syntax and evaluation rules for:
quotient and >

Expressions, Bindings, Meta-language 20

Conditional if expressions

Syntax: (if e1 e2 e3)

Evaluation:
1. Evaluate e1 to a value v1.
2. If v1 is not the value #f then

evaluate e2 and return the result
otherwise

evaluate e3 and return the result

Expressions, Bindings, Meta-language 21

Evaluation rules for if expressions.

Expressions, Bindings, Meta-language 22

e1 ↓ v1
e2 ↓ v2
v1 is not #f

(if e1 e2 e3) ↓ v2
[if nonfalse]

e1 ↓ #f
e3 ↓ v3

(if e1 e2 e3) ↓ v3
[if false]

e3 is not evaluated!

e2 is not evaluated!

Notice: at most one of these rules can have its premises satisfied!

if expressions
if expressions are expressions.

Racket has no "statements!"

(if (< 9 (- 251 240))
(+ 4 (* 3 2))
(+ 4 (* 3 3)))

(+ 4 (* 3 (if (< 9 (- 251 240)) 2 3)))

(if (if (< 1 2) (> 4 3) (> 5 6))
(+ 7 8)
(* 9 10)

Expressions, Bindings, Meta-language 23

if expression evaluation

Will either of these expressions result in an
error (stuck derivation) when evaluated?

(if (> 251 240) 251 (/ 251 0))

(if #f (+ #t 251) 251)

Expressions, Bindings, Meta-language 24

Language design choice: if semantics

25

e1 ↓ v1
e2 ↓ v2
v1 is not #f

(if e1 e2 e3) ↓ v2
[if nonfalse]

e1 ↓ #t
e2 ↓ v2

(if e1 e2 e3) ↓ v2
[if true]

Expressions, Bindings, Meta-language

v1 not required to be
a Boolean value

Alternative design

Variables and environments

How do we know the value of a variable?
(define x (+ 1 2))

(define y (* 4 x))

(define diff (- y x))

(define test (< x diff))

(if test (+ (* x y) diff) 17)

Keep a dynamic environment:
– A sequence of bindings mapping identifier (variable

name) to value.
– “Context” for evaluation, used in evaluation rules.

Expressions, Bindings, Meta-language 26

More Racket syntax
Bindings
b ::= (define x e)

Expressions
e ::= v | x | (+ e e) | … | (if e e e)

Literal Values (booleans, numbers)
v ::= #f | #t | n

Identifiers (variable names)
x (see valid identifier explanation)

Expressions, Bindings, Meta-language 27

Dynamic environments

Grammar for environment notation:
E ::= . (empty environment)

| x ⟼ v, E (one binding, rest of environment)
where:

• x is any legal variable identifier
• v is any value

Concrete example:
num ⟼ 17, absZero ⟼ -273, true ⟼ #t, .

Abstract example:
x1 ⟼ v1, x2 ⟼ v2, …, xn ⟼ vn, .

Expressions, Bindings, Meta-language 28

Variable reference expressions
Syntax: x
x is any identifier

Evaluation rule:
Look up x in the current environment, E, and return
the value, v, to which x is bound. If there is no binding
for x, a name error occurs.

Expressions, Bindings, Meta-language 29

E(x) = v

E ⊢ x ↓ v
[var]

Revised expression
evaluation judgment
uses environment.

Search from most to least recent (left to right).E ⊢ e ↓ v

Expression evaluation rules
must pass the environment.

Expressions, Bindings, Meta-language 30

E ⊢ v ↓ v [value] E ⊢ e1 ↓ n1
E ⊢ e2 ↓ n2
n = n1 + n2

E ⊢(+ e1 e2) ↓ n
[add]E(x) = v

E ⊢ x ↓ v
[var]

E ⊢ e1 ↓ v1
E ⊢ e2 ↓ v2
v1 is not #f

E ⊢ (if e1 e2 e3) ↓ v2
[if nonfalse]

E ⊢ e1 ↓ #f
E ⊢ e3 ↓ v3

E ⊢ (if e1 e2 e3) ↓ v3
[if false]

E ⊢ x ↓ v Derivation with environments

Expressions, Bindings, Meta-language 31

E ⊢ test ↓ #t [var]
E ⊢ x ↓ 3 [var]
E ⊢ 5 ↓ 5 [value]

E ⊢(* x 5) ↓ 15
E ⊢ diff ↓ 9 [var]

E ⊢ (+ (* x 5) diff) ↓ 24
E ⊢ (if test (+ (* x 5) diff) 17) ↓ 24

Let E = test ⟼ #t, diff ⟼ 9, y ⟼ 12, x ⟼ 3

[mult]

[add]
[if nonfalse]

define bindings

Syntax: (define x e)
define is a keyword, x is any identifier, e is any expression

Evaluation rule:
1. Under the current environment, E, evaluate e to a value v.
2. Produce a new environment, E', by extending the current

environment, E, with the binding x ⟼ v.

Expressions, Bindings, Meta-language 32

E ⊢ e ↓ v
E' = x ⟼ v, E

E ⊢ (define x e) ß E'
[define]

E ⊢ b ß E'

Environment example
; E0 = .

(define x (+ 1 2))

; E1 = x ⟼ 3, . (abbreviated x⟼ 3; write as x --> 3 in
text)

(define y (* 4 x))

; E2 = y ⟼ 12, x ⟼ 3 (most recent binding first)

(define diff (- y x))

; E3 = diff ⟼ 9, y ⟼ 12, x ⟼ 3

(define test (< x diff))

; E4 = test ⟼ #t, diff ⟼ 9, y ⟼ 12, x ⟼ 3

(if test (+ (* x 5) diff) 17)

; (environment here is still E4)
Expressions, Bindings, Meta-language 33

Racket identifiers

Most character sequences are allowed as identifiers, except:
– those containing

• whitespace
• special characters ()[]{}”,’`;#|\

– identifiers syntactically indistinguishable from numbers (e.g., -45)

Fair game: ! @ $ % ^ & * . - + _ : < = > ? /
– myLongName, my_long__name, my-long-name

– is_a+b<c*d-e?

– 64bits

Why are other languages less liberal with legal identifiers?

Expressions, Bindings, Meta-language 34

Big-step vs. small-step semantics
We defined a big-step operational semantics: evaluate "all at once"

A small-step operational semantics defines step by step evaluation:
(- (* (+ 2 3) 9) (/ 18 6))

→ (- (* 5 9) (/ 18 6))

→ (- 45 (/ 18 6))

→ (- 45 3)

→ 42

A small-step view helps define evaluation orders later in 251.

Expressions, Bindings, Meta-language 35

