
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Immutability
and Referential Transparency

Immutability 1

Topics

• Mutation is unnecessary.
• Immutability offers referential transparency.
• Mutation complicates aliasing.
• Broader design considerations

Immutability 2

Is immutability an obstacle or a tool?

– Programming experience in 251 and previously
– Readings about language implementation
– Efficiency in space and time
– Reliability
– Maintainability
– Ease of making/avoiding mistakes
– Clarity
– …

Immutability 3

Mutation is unnecessary.

Patterns for accumulating results without mutation:
– Build recursively
– Create fresh copy with changes
– Explicitly thread state through (e.g., fold):
• Function does one step, from arguments to 

result.
• HOF passes result on to the next step.

Immutability 4



Immutability offers
referential transparency

(define (sort-pair p)
(if (< (car p) (cdr p))

p
(cons (cdr p) (car p))))

(define (sort-pair p)
(if (< (car p) (cdr p))

(cons (car p) (cdr p))
(cons (cdr p) (car p))))

Cons cells are immutable.
Cannot tell if you copy or alias.

Immutability 5

Consider mutation
(define x (mcons 3 4))
(define y (sort-mpair x))

; mutate car of x to hold 5
(set-mcdr! x 5)

(define z (mcdr y))

x 3 4

y

3 4

?

?

What is z?

Mutable cons cell

Immutability 6

append
(define (append xs ys)

(if (null? xs)
ys
(cons (car xs) (append (cdr xs) ys))))

(define x (list 2 4)
(define y (list 5 3 0))
(define z (append x y))

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or ?

Immutability 7

Java security nightmare
class ProtectedResource {

private Resource theResource = ...;
private String[] allowedUsers = ...;
public String[] getAllowedUsers() {

return allowedUsers; 
}
public String currentUser() { ... }
public void useTheResource() {

for (int i = 0; i < allowedUsers.length; i++) {
if (currentUser().equals(allowedUsers[i])) {

... // access allowed: use it
return;

}
}
throw new IllegalAccessException();

}
}

Immutability 8



Mutant users!

The problem:
p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

The fix:
public String[] getAllowedUsers() {

… return a copy of allowedUsers …
}

Could this happen without mutability?

Immutability 9

A biasing on aliasing
Immutability

Aliasing does not affect correctness, just performance.
Other code cannot break your code, regardless of aliasing.
Changing your aliasing cannot break other code.

Document what, not how.
Safe by default, optimize for performance.

Mutability
Aliasing does affect both correctness and performance.

Other code can break your code, depending on your aliasing.
Changing your aliasing can break other code.

Document what and how.
Unsafe by default, optimize for performance and safety.

All the more important for parallelism and concurrency…
Immutability 10

Identify dependences between ________.

Tail Recursion 11

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive 
calls

loop 
iterations

What must we inspect to

Last W
eek

And maybe the

whole program

A broader PL design theme
Design choices matter. Less can be more (reliable).

Immutability + recursion (vs. mutability + loops) are central:
– Limiting how programs can be expressed
– Making elements more transparent/explicit

This style of design choice often supports:
– Simple reasoning
– Strong default guarantees
– Automated optimization opportunities

It does not mean limiting what computable functions can be 
implemented, just how.

Immutability 12

(a.k.a., not giving programmers 
unmitigated access
to dangerous volatile weapons)

(a.k.a., not further obscuring 
subtle/tricky program elements 
through layers of implicitness)


