WELLESLEY

A4

CS 251 Fall 2019
Principles of Programming Languages
Ben Wood

Local Bindings and Scope

Local Bindings and Scope

https://cs.wellesley.edu/~cs251/f19/

Topics

Control scope with local bindings
Shadowing

Scope sugar

Nested function bindings

Avoid duplicate computations
— style and convenience
— efficiency (big-0)

Local Bindings and Scope

2

l e t eXp reSSi O nS Interchangeable: (), [], or {}

/

Syntax: (let ([x1 el] .. [xn en]) e)
Each xi is any variable. e and each ei are any expressions.

Evaluation:

1. Under the current dynamic environment, E,
evaluate el through en to values vl, .., vn.

2. The result is the result of evaluating e under the environment, E,
extended with bindings x1 +— v1, .., xn+ vn.

EFel | vl

E F en | vn
xl ~~vl, .., xn > vn, E e | v

[xn en]) e) | v llet]

Local Bindings and Scope

E F (let ([x1l el] ..

let expressions

(+ (let ([x 1]) x)
(let ([y (let ([a 2]) a)]
[z 4])
(- 27Y)))

Local Bindings and Scope

4

let expressions control scope.

Scope of a binding = area of program that is evaluated while that
binding is in environment.

Visualize scope via lexical contours.

(define add-n |(lambda (x) (+ n x))|)

(define |(lambda (v) (add-n (add-n vy)))|)

(define 17)

(define (f -)

let ([c|(add-2n z)]

[di(- 2z 3) 1)

(+z (*cd)))))

Local Bindings and Sgope

let expressions control scope.

Let expression bindings are in the environment only
during evaluation of the body.

: cannot use x or v outside scope of bindings.

s E = .
(+ (let ([4]
[(* 2 %)])
i E = x—4, y—8,
(+))
;7 E = .
(*))

Local Bindings and Scope

6

Shadowing

s E = .
(let ([=2])
;s E = x—2, .
(+
(let ([=|(*) 1)
; E = x—4, x—2,
(+ x 3))|)

Local Bindings and Scope

and and or are sugatr!

(and el e2)

desugars to
(if el e2 #f£)

(or el e2)
where x1 is not used (without first being bound) in e2
desuga rs tO / (easiest: "fresh" identifier used nowhere in entire program)

(let ([x1 el])
(1f x1 x1 e2))

Local Bindings and Scope

8

let is sugar!

Syntax: (let ([x1 el] .. [xn en]) e)
Each xi is any variable. e and each ei are any expressions.

Evaluation:

1. Under the current dynamic environment, E,
evaluate el through en to values vl, .., vn.

2. The result is the result of evaluating e under the environment, E,
extended with bindings x1 +— v1, .., xn+ vn.

EF el | vl

E F en | vn
xl ~~vl, .., xn > vn, E + e | v

[let]
E F (let ([x1 el] .. [xn en]) e) | v

Local Bindings and Scope 9

let is sugar!

(let ([x1 el]
desugars to
((lambda (xI .. xn) e) el .. en)

[xn en]) e)

Example:
(let ([x (* 3 5)]) (+ x X))

desugars to
((lambda (x) (+ X X)) (* 3 5))

Local Bindings and Scope 10

Local function bindings

(define (quad x)
(let ([square (lambda (x) (* x x))1)
(square (square xX))))

Private helper functions bound locally can be good style.
Need letrec to allow recursion™.

(define (count-up-from-1 x)
(letrec
([count (lambda (from to)
(if (= from to)
(cons to null)
(cons from
(count (+ from 1) to))))1)
(count 1 x)))

Local Bindings and Scope 11

Better style:

(define (count-up-from-1 x)
(letrec
([count-to-x
(lambda (from)
(if (= from x)
(cons x null)
(cons from
(count-to-x (+ from 1) x))))1])
(count-to-x 1)))

* Functions can use bindings in the environment
where they are defined: count-to-x can use x.

* Unnecessary parameters are usually bad style:
— to in previous example

Local Bindings and Scope 12

Nested functions: style

Good style to define helper functions inside
the functions they help if they are:
— Unlikely to be useful elsewhere
— Likely to be misused if available elsewhere
— Likely to be changed or removed later

Trade-off in code design:
— reusing code saves effort and avoids bugs
— makes the reused code harder to change later

Local Bindings and Scope 13

Avoid repeated recursion

Consider this code and the recursive calls it makes

— Ignore callsto first, rest,and null?
(small constant amounts of work)

(define (bad-max xs)
(if (null? xs)
null ; not defined on empty list
(if (null? (rest xs))
(first xs)
(if (> (first xs)
(bad-max (rest xs)))
(first xs)
(bad-max (rest xs))))))

Local Bindings and Scope 14

(if (> (first xs)
(bad-max (rest xs)))
(first xs)
(bad-max (rest xs)))

Fast vs. unusable

(bad-max (range 50 0 -1))

>bm 50,.. — bm 49,.. ~— bm 48,.. —> — — bm 1

i(bad-max (range 1 51))

bm 1,.. — bm 2,.. X’ bm 3,.. om 50
bm 3,. 50
. 2
bm 2,.. _\> bm - ? " times

i->-->->-->-J \\\ ----------- > bm/.J,{ —> —> bm 50
Assume 107 seconds each TSI

Then: 50 x 107 sec vs 1.12 x 108 sec = 3.5 years

(bad-max (list 1 2 .. 100)) takes >4 x 10%years.

Our sun is predicted to die in about 5 x 10° years. Loca .
ocal Bindings and Scope 15

Efficient max

(define (good-max xs)
(if (null? xs)
null ; not defined on empty list
(if (null? (first xs))
(first xs)
(let ([rest-max (good-max (rest xs))])
(if (> (first xs) rest-max)
(first xs)
rest-max)))))

gm 50,.. — gm 49,. ~» gm 48,. —* —> —> gm1
gm 1,.. — gm 2,.. > gm 3, .. > » > gm 50

Local Bindings and Scope 16

Efficient and concise max

(define (maxlist xs)
(if (null? xs)
null ; not defined on empty list
(max (first xs) (maxlist (rest xs)))))

; even better implementations to come later

Local Bindings and Scope 17

