Tail Recursion
Topics

Recursion is an elegant and natural match for many computations and data structures.

- Natural recursion with immutable data can be space-inefficient compared to loop iteration with mutable data.
- **Tail recursion** eliminates the space inefficiency with a simple, general pattern.
- Recursion over immutable data expresses iteration more clearly than loop iteration with mutable state.
- More higher-order patterns: fold
Naturally recursive factorial

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))))

How efficient is this implementation?

Space: O()
Time: O()
CS 240-style machine model

Registers

fixed size, general purpose

Program Counter

Stack Pointer

Code

Stack

Call frame

Call frame

Call frame

Heap

arguments, variables, return address per function call

cons cells, data structures, ...
Example

```
(define (fact n)
  (if (= n 0)
    1
    (* n (fact (- n 1))))
)
```

Space: O()

Time: O()

Tail Recursion

Remember: n ↦ 2; and “rest of function” for this call.
(define (fact n)

(if (= n 0) 1
(* n (fact (- n 1)))))

Base case returns base result.

Recursive case returns result so far.

Compute result so far after/from recursive call.

Compute remaining argument before/for recursive call.
Tail recursive factorial

\[(\text{define \ (fact \ n)}\)\]
\[(\text{(define \ (fact-tail \ n \ acc)}\)\]
\[(\text{(if \ (= \ n \ 0) \ acc \ (fact-tail \ (- \ n \ 1) \ (* \ n \ acc))})\)\]

Base case returns full result.

Recursive case returns full result.

Initial accumulator provides base result.

Accumulator parameter provides result so far.

Compute result so far before/for recursive call.

Compute remaining argument before/for recursive call.
Common patterns of work

Natural recursion:
- Argument
- Full result
- Reduce argument
- Accumulate result so far

Tail recursion:
- Argument
- Base result
- Base case
- Accumulate result so far

Deeper recursive calls
Natural recursion

Recursive case:
Compute result
in terms of argument and
accumulated recursive result.

```
(define (fact n)
  (if (= n 0)
      1
      (* n (fact (- n 1)))))
```
Tail recursion

Recursive case:
Compute recursive argument in terms of argument and accumulator.

\[
\text{(define (fact n)}\n\text{(define (fact-tail n acc))}\n\text{(if (= n 0) acc acc (fact-tail (- n 1) (* n acc)))}})\n\text{(fact-tail n 1))}
\]
The call stacks

(ft 0 6) (ft 3 1) (ft 2 3) (ft 1 6) (ft 0 6) : 6

(ft 3 1) : (ft 2 3) : (ft 1 6) : (ft 0 6)

(ft 3) : (ft 3 1) : (ft 2 3) : (ft 1 6)

ft = fact-tail

Nothing useful remembered here.

Tail Recursion
Optimization under the hood

(define (fact n)
 (define (fact-tail n acc)
 (if (= n 0)
 acc
 (fact-tail (- n 1) (* n acc)))
 (fact-tail n 1))

Language implementation recognizes tail calls.
 • Caller frame never needed again.
 • Reuse same space for every recursive tail call.
 • Low-level: acts just like a loop.

Racket, ML, most “functional” languages, but not Java, C, etc.
Tail recursion transformation

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))))

(define (fact n)
 (define (fact-tail n acc)
 (if (= n 0)
 acc
 (fact-tail (- n 1) (* n acc)))))

Base result becomes initial accumulator.

Recursive step applied to accumulator instead of recursive result.
Example

```
(define (sum xs)
  (if (null? xs)
      0
      (+ (car xs) (sum (cdr xs)))))
```

```
(define (sum xs)
  (define (sum-tail xs acc)
    (if (null? xs)
      acc
      (sum-tail (cdr xs) (+ (car xs) acc))))
  (sum-tail xs 0))
```
Practice

Naturally recursive `rev` is $O(n^2)$: each recursive call must traverse to end of list and build a fully new list.
- $1+2+...+(n-1)$ is almost $n^2/2$
- Moral: beware append, especially within outer recursion

Tail-recursive `rev` is $O(n)$.
- Cons is $O(1)$, done n times.

What about map, filter?
Tail position

Recursive definition of **tail position**:

- In `(lambda (x1 ... xn) e)`, the body `e` is in tail position.
- If `(if e1 e2 e3)` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not).
- If `(let ([x1 e1] ... [xn en]) e)` is in tail position, then `e` is in tail position (but the binding expressions are not).

Note:

- If a non-lambda expression is not in tail position, then no subexpressions are.
- Critically, in a function call expression `(e1 e2)`, subexpressions `e1` and `e2` are **not** in tail position.

A **tail call** is a function call in **tail position**.
Why tail recursion instead of loops with mutation?

1. Simpler language, but just as efficient.
2. Explicit dependences for easier reasoning.

 – Especially with HOFs like fold!
Identify dependences between ________.

Python: loop iteration with mutation

```python
def fib(n):
    fib_i = 0
    fib_i_plus_1 = 1
    for i in range(n):
        fib_i_prev = fib_i
        fib_i = fib_i_plus_1
        fib_i_plus_1 = fib_i_prev + fib_i_plus_1
    return fib_i
```

Racket: immutable natural recursion

```racket
(define (fib n)
  (if (< n 2)
      n
      (+ (fib (- n 1)) (fib (- n 2))))
)
```

Racket: immutable tail recursion

```racket
(define (fib n)
  (define (fib-tail n fibi fibi+1)
    (if (= 0 n)
        fibi
        (fib-tail (- n 1) fibi+1 (+ fibi fibi+1)))
  (fib n 0 1))
```

Tail Recursion
Identify dependences between ________.

(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
 (define (fib-tail n fibi fibi+1)
 (if (= 0 n)
 fibi
 (fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))
 (fib n 0 1))

def fib(n):
 fib_i = 0
 fib_i_plus_1 = 1
 for i in range(n):
 fib_i_prev = fib_i
 fib_i = fib_i_plus_1
 fib_i_plus_1 = fib_i_prev + fib_i_plus_1
 return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion

What must we inspect to

recursive calls

loop iterations
Fold: iterator over recursive structures
(a.k.a. reduce, inject, ...)

(fold_ combine init list)

accumulates result by iteratively applying

(combine element accumulator)

to each element of the list and accumulator so far
(starting from init) to produce the next accumulator.

- (foldr f init (list 1 2 3))
 computes (f 1 (f 2 (f 3 init)))

- (foldl f init (list 1 2 3))
 computes (f 3 (f 2 (f 1 init)))
Folding geometry

\[(\text{foldr} \ combine \ \text{init} \ L)\]

\[(\text{foldl} \ combine \ \text{init} \ L)\]
Super-iterators!

- Not built into the language
 - Just a programming pattern
 - Many languages have built-in support, often allow stopping early without resorting to exceptions

- Pattern separates recursive traversal from data processing
 - Reuse same traversal, different folding functions
 - Reuse same folding functions, different data structures
 - Common vocabulary concisely communicates intent

- \text{map, filter, fold + } \text{closures/lexical scope} = \text{superpower}
 - Next: argument function can use any “private” data in its environment.
 - Iterator does not have to know or help.