
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Tail Recursion

1Tail Recursion

https://cs.wellesley.edu/~cs251/f19/

Topics

Recursion is an elegant and natural match for many
computations and data structures.

• Natural recursion with immutable data can be space-
inefficient compared to loop iteration with mutable data.

• Tail recursion eliminates the space inefficiency with a
simple, general pattern.

• Recursion over immutable data expresses iteration more
clearly than loop iteration with mutable state.

• More higher-order patterns: fold

2Tail Recursion

Naturally recursive factorial

3

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Tail Recursion

Space: O()

Time: O()
How efficient is this implementation?

CS 240-style machine model
Registers

Stack
Pointer

Program
Counter

StackCode

Heap

Call frame

Tail Recursion 4

fix
ed

 s
iz

e,
 g

en
er

al
 p

ur
po

se

Call frame

Call frame

arguments, variables,
return address
per function call

cons cells,
data structures, …

Example

5

(fact 3): 3*_(fact 3)

(fact 2)

(fact 3): 3*_ (fact 3): 3*_

(fact 2): 2*_

(fact 1)

(fact 2): 2*_

(fact 1): 1*_

(fact 0)

(fact 3): 3*_

(fact 2): 2*_

(fact 1): 1*_

(fact 0): 1

(fact 3): 3*_

(fact 2): 2*_

(fact 1): 1*1

(fact 3): 3*_

(fact 2): 2*1

(fact 3): 3*2

Remember: n ↦ 2; and
“rest of function” for this call.

Space: O()

Time: O()

Tail Recursion

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Naturally recursive factorial

6

(define (fact n)

(if (= n 0)
1
(* n (fact (- n 1)))))

Base case returns
base result.

Tail Recursion

Compute remaining argument
before/for recursive call.

Recursive case returns
result so far.

Compute result so far
after/from recursive call.

Tail recursive factorial

7

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))
Compute remaining argument

before/for recursive call.

Base case returns
full result.

Initial accumulator
provides base result.

Accumulator parameter
provides result so far.

Tail Recursion

Recursive case returns
full result.

Compute result so far
before/for recursive call.

Common patterns of work

8

Natural recursion: Tail recursion:

Reduce
argument

Accumulate
result
so far

Argument

Base result

Full result

Reduce
argument

Accumulate
result
so far

Argument

Full result

Base result

D
ee

pe
r r

ec
ur

si
ve

 c
al

ls

Tail Recursion
Base case Base case

Natural
recursion

Tail Recursion 9

(fact 4): 24

(fact 3): 6

(fact 2): 2

(fact 1): 1

(fact 0): 1

-1

-1

-1

-1

reduce

ac
cu

m
ul

at
e*

*

*

*

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

full resultargument

base resultbase case

Recursive case:
Compute result
in terms of argument and
accumulated recursive result.

Tail
recursion

Tail Recursion 10

(fact-tail 4, 1): 24

(fact-tail 3, 4): 24

(fact-tail 2, 12): 24

(fact-tail 1, 24): 24

(fact-tail 0, 24): 24

-1

-1

-1

-1

reduce

ac
cu

m
ul

at
e*

*

*

*

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

full result

base result

base case

argument

Recursive case:
Compute recursive argument
in terms of argument and
accumulator.

The call stacks

11

(fact 3): _ (fact 3)

(ft 3 1)

(fact 3): _

(ft 3 1):_

(ft 2 3)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6):_

(ft 0 6)

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 1 6):_

(ft 0 6):6

(fact 3): _

(ft 3 1):_

(ft 2 3):_

(ft 6 1):6
etc.

(fact 3): _

(ft 3 1):_

(ft 2 3):6

ft = fact-tail

Nothing useful
remembered here.

Tail Recursion

Optimization under the hood

12

(fact 3) (ft 3 1) (ft 2 3) (ft 1 6) (ft 0 6)

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Language implementation recognizes tail calls.
• Caller frame never needed again.
• Reuse same space for every recursive tail call.
• Low-level: acts just like a loop.

Racket, ML, most “functional” languages, but not Java, C, etc.

Space: O()

Time: O()

Tail Recursion

Tail recursion transformation

13

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

(define (fact n)
(define (fact-tail n acc)

(if (= n 0)
acc
(fact-tail (- n 1) (* n acc))))

(fact-tail n 1))

Tail Recursion

natural recursion

tail recursion

Base result becomes
initial accumulator.

Accumulator
becomes
base result.

Recursive step applied to accumulator
instead of recursive result.

Example

14

(define (sum xs)
(if (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

(define (sum xs)
(define (sum-tail xs acc)

(if (null? xs)
acc
(sum-tail (cdr xs) (+ (car xs) acc)))

(sum-tail xs 0))

Tail Recursion

Practice

• Naturally recursive rev is O(n2): each recursive call must traverse to
end of list and build a fully new list.
– 1+2+…+(n-1) is almost n*n/2
– Moral: beware append, especially within outer recursion

• Tail-recursive rev is O(n).
– Cons is O(1), done n times.

Tail Recursion 15

(define (rev xs)

(define (rev xs)

What about map, filter?

Tail position

Recursive definition of tail position:
– In (lambda (x1 … xn) e), the body e is in tail position.
– If (if e1 e2 e3) is in tail position, then e2 and e3 are in tail

position (but e1 is not).
– If (let ([x1 e1] … [xn en]) e) is in tail position, then e is

in tail position (but the binding expressions are not).

Note:
– If a non-lambda expression is not in tail position, then no

subexpressions are.
– Critically, in a function call expression(e1 e2), subexpressions e1

and e2 are not in tail position.

A tail call is a function call in tail position.
16

Tail call intuition:
“nothing left for caller to do”,
“callee result is immediate caller result”

Tail Recursion

Why tail recursion instead of
loops with mutation?
1. Simpler language, but just as efficient.
2. Explicit dependences for easier reasoning.
– Especially with HOFs like fold!

Tail Recursion 17

Identify dependences between ________.

Tail Recursion 18

(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive
calls

loop
iterations

Identify dependences between ________.

Tail Recursion 19

(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib n)
(define (fib-tail n fibi fibi+1)
(if (= 0 n)

fibi
(fib-tail (- n 1) fibi+1 (+ fibi fibi+1))))

(fib n 0 1))

def fib(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i_prev + fib_i_plus_1

return fib_i

Python: loop iteration with mutation

Racket: immutable tail recursion

Racket: immutable natural recursion recursive
calls

loop
iterations

What must we inspect to

Fold: iterator over recursive structures

(fold_ combine init list)

accumulates result by iteratively applying
(combine element accumulator)

to each element of the list and accumulator so far
(starting from init) to produce the next accumulator.

– (foldr f init (list 1 2 3))
computes (f 1 (f 2 (f 3 init)))

– (foldl f init (list 1 2 3))
computes (f 3 (f 2 (f 1 init)))

20

(a.k.a. reduce, inject, …)

HOF HOF

Tail Recursion

Folding geometry

21

init

V ⋯1 V2 Vn-1 Vn

combine

init combine⋯

combine combine combine⋯
(foldr combine init L)

combinecombinecombine

L ⟼

(foldl combine init L)

result

result

Tail recursion

Natural recursion

Tail Recursion

Super-iterators!
• Not built into the language

– Just a programming pattern
– Many languages have built-in support, often allow stopping early

without resorting to exceptions

• Pattern separates recursive traversal from data processing
– Reuse same traversal, different folding functions
– Reuse same folding functions, different data structures
– Common vocabulary concisely communicates intent

• map, filter, fold + closures/lexical scope = superpower
– Next: argument function can use any “private” data in its

environment.
– Iterator does not have to know or help.

22Tail Recursion

