
Interpreter Project, Part 4*

You are not required to submit this assignment. But it is fun!

Your interpreter is sophisticated enough to be able to execute Racket programs of substantial com-
plexity. Aside from a few examples (most notably, the stream examples), your interpreter can
evaluate all the code you have written in this course so far. In fact, with just a few more modi-
fications, it’s possible to run the interpreter itself in the interpreter. Interpreters that can do this
are called "meta-circular" interpreters. Of course, the resulting "meta-interpreter" can do the same
thing, yielding a "meta-meta interpreter", which of course can do the same thing, yielding...

Believe it or not, you don’t need to write any more code to get meta-circularity to work. However,
the code you already wrote might not work as well you thought it did – and you may need to go
back and alter a few things. To make things worse, debugging a meta-circular interpreter is quite
difficult.

1 Testing your meta-circular interpreter
One way to test whether or not your interpreter is meta-circular is to copy and paste all of your
code, excluding any lines that begin with a # sign (e.g. "#lang racket"), or begin with (require
...), (trace ...), or (provide ...) from interpreter.rkt onto the INTERPRETER> prompt. (Be sure
you press Enter after you paste your code or DrRacket won’t even begin evaluating what you’ve
pasted!)

Unfortunately, doing this is EXTREMELY slow – probably due to a bug in DrRacket – and for
some strange reason, this takes a while.

The other way to test it, and the way that I will test it after you have handed it in, is to simply
include your file into your interpreter. The eval-include function will read any file, evaluating
each statement one-by-one, and return void. To help you in debugging problems, the eval-include
function prints out the result of evaluating each statement in the file you are including.

I’ve written all of the code for including files, you just need to add the following line to your i-eval
function:

((include? exp) (eval-include exp env))

To help you try it out, I have included a small file in the i-6 directory. First run your interpreter,
then at the INTERPRETER> prompt, type (include "test.rkt"). The test program will define two
functions which compute factorial: a recursive process solution, factorial-r, and an iterative process
solution, factorial-i. When each function is included, it’s name will be displayed. Once it is
included, try out each function:

(factorial-r 5) (factorial-i 5)

*Thanks to Rich Wicentowski for developing the original version of this project.

1



2 Patching up your meta-circular interpreter
You may found that you have used Racket language features in your interpreter implementation
that you have not implemented in your interpreter. For instance, maybe you used map and fold,
but did not add them to your interpreter, since they were extra credit questions in Part 3.

You can either patch this by implementing these missing language features, or rewriting your
interpreter to avoid them. This process may take some time.

To make my interpreter metacircular, the major changes involved rewriting functions that used
letrec to use helper functions instead; rewriting functions that used match; and implementing the
define syntactic sugar for functions.

3 Metacircularity
Assuming that things worked, it’s time to try including your interpreter into itself. At the INTER-
PRETER> prompt, type (include "interpreter.rkt"). You will see each function name printed out
as it is included into your interpreter. It may not work the first time... or the second time... or the
third time... or... Getting your interpreter to read in all of its own code can be challenging.

When you get the INTERPRETER> prompt after including the interpreter.rkt file, your interpreter
has actually included all of its own code into itself... which means you can now type (repl) and run
your interpreter inside of itself...

If, after typing (repl) you get the INTERPRETER> prompt, that prompt is actually from your
interpreter running inside of itself!

Now it’s time to see if your interpreter running inside of itself works. Many times, you can get to
the INTERPRETER> prompt but some simple things (like primitives) don’t work. So, try running
some simple tests of your interpreter running inside itself. When you are confident it is working,
try some more difficult tests.

When you are really sure you think it’s working, it’s time to try including your interpreter into your
interpreter which is already running in your interpreter. Type (include "interpreter.rkt") and press
enter. This will now include your interpreter code into your meta-circular interpreter. When it is
complete (it should take 2-5 minutes depending on the speed of your machine, with the bulk of the
time running the setup-env procedure), and you are presented with the INTERPRETER> prompt,
it means you can just run (repl) again, and now you are running your interpreter in your interpreter
in your interpreter, in DrRacket. Test it out on something really simple, like (+ 3 4). It will take
about one or two minutes to give you an answer.

Finally, if you are daring, and you have a lot of time to kill, you can include your interpreter into
itself again. Expect to wait a very long time. I’d recommend going to lunch, taking a walk, and
going to dinner, maybe even going to sleep, and waking up the next morning to see if it finished.
I started mine running and came back 4 hours later and it was still going... it can be very very
slow. However, if you get a new prompt, type (repl) to run the meta-meta-meta-meta-interpreter
and expect to wait a very long time for anything to happen. Theoretically you could keep doing
this forever, but I doubt you’d want to try – or wait.

2


	Testing your meta-circular interpreter
	Patching up your meta-circular interpreter
	Metacircularity

