
CS 251Programming	
Languages Fall 2021

Carolyn Anderson

Programs	as	Data

I/O	in	Racket
We’ve already seen how to read from files in Racket:

Open a file:
(define input (open-input-file “text.txt")

Read a single line from the file:
(read-line input)

Close file:
(close-input-port out)

I/O	in	Racket
Open a file:

(define input (open-input-file “text.txt")

Read first 100,000 characters of file as a string:
(read-string 100000 input)

If file contents are shorter than 100,000, all of the file will be read.

I/O	in	Racket
Here’s how to write to files:

Open a file:
(define outfile (open-output-file “text.txt”))

Write a string to file:
(write “cat” outfile)

Throws an error if file already exists!

I/O	in	Racket
Open a file:
(define outfile
 (open-output-file #:exists 'truncate “text.txt”)

Write a string to file:
(write “cat” outfile)

'truncate overwrites existing contents of file

I/O	in	Racket
Open a file:
(define outfile
 (open-output-file #:exists ‘append “text.txt”)

Write a string to file:
(write “cat” outfile)

'append appends to end of existing file contents

Quoting
Quote is a way to express data literals.
Given any Racket expression, quote returns the contents
of the expression as data.

The quoted data remains unevaluated.

Quoting

(quote 3)
(quote “hi")
(quote a)
(quote (+ 3 4))
(quote (a b c))

(quote (define x 25))

(quote (lambda (x) (+ x 3))) =>

a number
a string

a symbol
a list
a list

a list

a list

=> 3
=> "hi"
=> a
=> (list '+ 3 4)
=> (list 'a 'b 'c)

=> (list 'define 'x 25)

(list 'lambda (list 'x) (list '+ 'x 3))

Symbols
Quoting a variable name does not produce a string, but
another datatype: a symbol.

If we didn’t have this datatype, we wouldn’t be able to
distinguish quoted names from strings.

'(define x 10) => (list 'define 'x 10) 'define is a symbol
'("define" x 10) => (list "define" 'x 10) "define" is a string

Writing	a	Racket	program	to	=ile
Quoting gives us a way to write out Racket programs
without evaluating them— which is exactly what we want
to do when we write programs to file.

Shorthand	for	Quote
' is short-hand for (quote):

> (first ' 'road)
'quote

> (first '(quote road))
'quote

Print	and	Write	Revisited
As we saw early on, Racket has two print operators: print
and write. For quoted expressions, they act differently!

print prints a value in the same way that is it printed by
the REPL.

write prints a value in such a way that read on the output
produces the value back.

>(print #f)
 #f
>(print (quote
 (lambda (x)(x))))
 '(lambda (x)(x))

>(write #f)
 #f
>(write (quote
 (lambda (x)(x))))
 (lambda (x)(x))

Print	versus	Write

Print prints a value in the same way that is it printed
by the REPL.

Write prints a value in such a way that read on the
output produces the value back.

>(print #f)
 #f
>(print (quote
 (lambda (x)(x))))
 '(lambda (x)(x))

>(write #f)
 #f
>(write (quote
 (lambda (x)(x))))
 (lambda (x)(x))

De=ining	Data	Structures

Struct
What do data structures look like in Racket?

De=ining	Data	Structures

Struct
What do data structures look like in Racket?

Struct
What do data structures look like in Racket?

We can define them using struct.

(struct struct-id (field-id ...))

Struct
Say that we wanted to represent different orders at Truly’s.
We’ll start with a scoop struct.

Struct
Next, we want to represent an ice cream cone. Let’s say
that we need to specify the cone type and up to two
scoops.

Struct
struct automatically defines getter methods for its fields.
We can use these to access the cone type and scoops of a
cone.

Struct
What issues have we run into?

Problem	1:	=ixed	number	of	=ields
We said that we wanted to allow cones to have up to two
scoops. How do we add optional fields?

Problem	1:	=ixed	number	of	=ields
We can do this using the #:auto-value option. This fills in a
default value if a field is not filled.

Problem	2:	validating	=ields
As we have seen, by default, struct imposes no
requirements on the values of its fields. But we can add
some checks using a guard.

Case	analysis
So far we’ve relied on cond and if for control flow
operators. Another useful construct is match.

In a match, the programmer defines a number of cases.
Racket finds the first pattern (left) that matches the result
of the given expression, and returns the result of
evaluating its body (right).

(match exp
 (pat1 body1)
 (pat2 body2)

….
 (patn bodyn))

Match
> (match 5
 (5 “five”) ; Check if x is 5
 (10 “ten”) ; Check if x is 10
 (20 “twenty”)) ; Check if x is 20

“five”

Special	match	syntax:	(?	exp	pat)
(? exp pattern) is a special feature of match.
It checks whether exp applied to pattern is true.

This is useful for type-checking, since pattern
refers to the value of the matched item, not its type.

Special	match	syntax:	_
_ is the match equivalent of else in a conditional: it
matches any expression.

You should only use _ in your last case, since otherwise,
none of your other cases will be evaluated.

Special	match	syntax:	…
You can omit named sub-expressions in a case using …

Ellipsis acts like the Kleene star (*) in regular expressions.

 (match lst
 ((list 1) “length 1”)
 ((list x … 10) “length 10”))

Exercise:	check	for	duplicates
Write a function that takes a list of strings and checks
whether the first item in the string ever re-occurs:

> (dups? '("cat" "is" "cat"))
#t
> (dups? '("cat" "says" "meow"))
#f

Exercise:	generic	add
Write a generic addition function using match:

✦ If given a list of strings, your function should join them
together into a single string.

✦ If given a list of numbers, your function should sum
them together.

✦ If given any other kind of list, your function should
return void.

Returning	functions
The right-hand-side of match cases can return any kind of
Racket expression, including functions.

(match x
 (0 +)
 (1 *))

