
CS 251Programming	
Languages Fall 2021

Carolyn Anderson

Types

What	do	we	do	about	errors?
In our big step semantics, we can describe situations
where errors arise. But we won’t track errors, since that
requires representing the program context (hard 😢).

When we hit an error, we just abandon the derivation.

What	if	we	could	catch	errors	early?

(racket …)

(more racket …)

(lots of racket …)

…

(+ 1 #t)

This program contains an error:

But we won’t know about
it until we get here!

What if we could catch the error before the program runs?

Idea: give each expression in our language a type label.

Types

(racket …)

(more racket …)

(lots of racket …)

…

(+ 1 #t)

(+:number → number → number 1:number #t:bool)

clash!

A type is…

✦ a set of values that share some property

✦ a promise to produce a member of a certain set of

values

✦ a prediction about the value an expression will yield

Types

✦ Help catch certain kinds of errors

✦ Help with documentation

✦ Compilers can exploit them to make code go faster

Why	types?

What	types?
In theory we could make every value its own type.

But this is equivalent to not having any types: it doesn’t
help us reason about errors like (+ 1 #t): + would have to
accept an infinite number of individual number types.

In practice, type systems often reflect categories of values
that share implementation-independent properties.

Categorizing	values	by	their	properties

Integers:

✦ Can be added and

subtracted

✦ Can be multiplied and

divided

✦ Produce an integer

when 1 is added to them

Lists:

✦ Can be concatenated

✦ Can have items

appended to them

✦ Have a first item

These properties are implementation independent.

In static type checking , a program is checked for type
errors before it is run.

This catches errors as early as possible.

Static	type	checking

Type	Judgements
A type judgment is a rule for determining the type of an
expression.

We use the following notation for a type judgment:

Γ⊢e:t

This rule is pronounced “Γ proves that e has type t”
or “e types to t in environment Γ”

typing environment expression
type

A	subset	of	Racket

Values Operators
✦ numbers

✦ Booleans

✦ functions

✦ +

✦ -

✦ and

✦ or

✦ function application

✦ if

Note: we’re omitting let, letrec, and define

Typing	numbers	and	Booleans
Γ⊢e:number Γ⊢e:bool

Credit: presentation of type-checking follows Krishnamurthi (2007)

Typing	addition
Γ⊢e1:number Γ⊢e2:number

Γ⊢(+ e1 e2):number

Exercise:	typing	and
Write the type judgment for and statements.

Exercise:	typing	and
Write the type judgment for and statements.

Γ⊢e1:boolean Γ⊢e2:bool

Γ⊢(and e1 e2):bool

Exercise:	typing	and
Write the type judgment for and statements.

Γ⊢e1:boolean Γ⊢e2:bool

Γ⊢(and e1 e2):bool

Is this accurate for Racket?

Typing	functions
Functions are a little harder.

We’ll consider only anonymous functions, since we don’t
have define or any local binding constructs.

Also, we’ll only consider 1-parameter functions.

(lambda (x) e)

bodyparameter

Typing	functions
The body is the easy part. We can just recursively type-
check it.

(lambda (x) e)

Γ⊢x:?? Γ⊢e:tau

Γ⊢(lambda (x) e):?? tau

type variable

functions have arrow types

Typing	functions
But what can we do about the parameter?

We don’t know anything about it!

(lambda (x) e)

Γ⊢x:?? Γ⊢e:tau

Γ⊢(lambda (x) e):?? tau

Typing	functions
Solution: we have to assume that the program comes
with type annotations on all function parameters.

(lambda (x:tau1) e)

Γ(x⊢tau1) Γ⊢e:tau2

Γ⊢(lambda (x:tau1) e):tau1 tau2

Typing	variables
Our last kind of value is variables.

Typing variables is easy. We will assume that the
environment records their type.

Γ(e) = tau

Γ⊢e:tau

Typing	function	application

What about function application?

We have two expressions: the function and its argument.

((lambda (x) (+ x 5)) 10)

Typing	function	application

What about function application?

We have two expressions: the function and its argument.

((lambda (x) (+ x 5)) 10)

We can recursively type check those:

Γ⊢e2:tau3 Γ⊢e1:tau1 tau2
Γ⊢(e1 e2):???

Typing	function	application
We also need to make sure that the function and its
argument are type-compatible!

Γ⊢e2:tau3 Γ⊢e1:tau1 tau2

Γ⊢(e1 e2):tau2 if tau1 = tau3

