
CS 251Programming	
Languages Fall 2021

Carolyn Anderson

Functional	Programming

What	makes	a	PL	functional?
✦ They provide abstractions over functions

What	makes	a	PL	functional?
✦ They provide abstractions over functions

✦ They treat functions like other values in the language

What	makes	a	PL	functional?
✦ They provide abstractions over functions

✦ They treat functions like other values in the language

✦ They emphasize recursion over iteration

What	makes	a	PL	functional?
✦ They provide abstractions over functions

✦ They treat functions like other values in the language

✦ They emphasize recursion over iteration

✦ They do not allow mutation

Mutation

x = 5

x = 7

Mutation: overwriting the value of a variable or data
structure.

State: a mechanism for keeping track of the current
values associated with variables.

foo(x) = 15

foo(x) = 21

How is state different than memory?

Lambda	Calculus
λy.λx.y+x

Expresses a function that takes two arguments, x and y, and adds them.

✦ Lambdas bind variables

✦ Lambda calculus describes computation using the concepts

of function application, substitution, binding, and scope.

✦ There’s no mutation in lambda calculus.

Turing showed that the classes of functions defined by λ-
calculus and Turing machines coincide.

Racket	is	Turing-complete

(even	without	mutation)

We	just	have	to	learn	to	think	functionally

Welcome	to	Racket
You are now a Racketeer….

xkcd

Dr.	Racket

Basic	Datatypes

NumbersBooleans

Strings

1

1/2

1.0

“hi”

“h”

#t

#f

Characters

#\h

#\λ

Lists

(list 1 2 3)

(list “apple” “banana” “carrot”)

(list 1 “carrot” 3 #t “cucumber”)

Lists
In Racket, lists are recursively defined:

a list is either null, or a pair whose second item is a list.

Lists have two key methods: first and rest

 > (first (list 1 2 3))

 1

 > (rest (list 1 2 3))

 (list 1 2)

Control	Flow

(if (= x 5) test

 #t value if true

 #f) value if false

(cond ((= x 0) (printf “x is 0”))

 ((= x 1) (printf “x is 1”))

 (else (printf “x is greater than 1”)))

Why	are	there	so	many	parentheses?

xkcd

Syntax
✦ Leaf: a value that can’t be evaluated any further (also

called an “atomic value” or a “literal”)

✦ Leaves are unparenthesized in Racket

✦ Every non-leaf node in the syntax tree is marked by a

pair of parentheses
✦ Special forms have a keyword after the open

parenthesis: (if e1 e2 e3)
✦ Most other parentheses mark function calls

Variable	definitions
✦ Syntax: (define id e)

✦ Example:

(define x 1)

> x

1

Functions
✦ Syntax: (define (id) e)

✦ Examples:

(define (add)

 (+ 10 10))

Functions

(define (hello-world)

 (printf “Hello world!”))

✦ Syntax: (define (id) e)

✦ Examples:

(define (add)

 (+ 10 10))

Functions

(define (hello-world)

 (display “Hello world!”))

✦ Syntax: (define (id) e)

✦ Examples:

(define (add)

 (+ 10 10))

🚧 Warning: side effect 🚧

Side	effects
✦ Side effect: any observable effect other than producing

a value

✦ Functional programming languages tend to avoid side

effects (mutation is a kind of side effect)

✦ Side effects make it harder to reason formally about a

program’s behavior

✦ However, printing is very useful!

Racket	printing
✦ What’s the difference between display, write, and

print?

✦ What does displayln do?

Documentation
✦ Racket Guide:

- https://docs.racket-lang.org/guide/index.html
✦ Racket Reference:

- https://docs.racket-lang.org/reference/index.html

https://docs.racket-lang.org/guide/index.html
https://docs.racket-lang.org/reference/index.html

Common	Racket	mistakes

Common	Racket	mistakes
1. Wrap leaf values in parens: (17)

2. Use operators in infix rather than prefix

position

3. Put arguments in parentheses with function

name outside

4. Use unexpected keywords

5. Omit parentheses for non-leaf node

