WELLESLEY

W

Programming CS 251
Languages Fall 2021

Carolyn Anderson

Functional Programming

What makes a PL functional?

They provide abstractions over functions

What makes a PL functional?

They provide abstractions over functions

They treat functions like other values in the language

What makes a PL functional?

They provide abstractions over functions
They treat functions like other values in the language

They emphasize recursion over iteration

What makes a PL functional?

They provide abstractions over functions
They treat functions like other values in the language
They emphasize recursion over iteration

They do not allow mutation

Mutation

5 foo(x) = 15
7 foo(x) = 21

X
X

Mutation: overwriting the value of a variable or data
structure.

State: a mechanism for keeping track of the current
values associated with variables.

How 1s state different than memory?

LLambda Calculus

Ay.AX.y+X

Expresses a function that takes two arguments, x and vy, and adds them.

LLambdas bind variables

Lambda calculus describes computation using the concepts
of function application, substitution, binding, and scope.

There’s no mutation in lambda calculus.

Turing showed that the classes of functions defined by A-
calculus and Turing machines coincide.

Racket is Turing-complete
(even without mutation)

We just have to learn to think functionally

Welcome to Racket

You are now a Racketeer....

)|
)
o’

LISP 15 OVER HALF A | | T WONDER IF THECYCLES THESE ARE YOUR
&LL CONTINUE FOREVER. FATHER'S PARENTH
\

CENTURYOLD AND IT R ESES

STILL HAS THIS PERFECT,)

\T\IMELESS AIR ABWET./ X @
N

| f FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE. LISP ARTS,

FOR A MORE... CIVILZED AGE.

xkcd

Dr. Racket

Untitled 2v (define ...) v Check Syntax [« Debug @[2] Macro Stepper Pl Run> Stop [l

1 | #lang racket

Welcome to DrRacket, version 6.12 [3m].
Language: racket, with debugging; memory limit: 128 MB.

>

Determine language from source v 2:0 292.02MB l:] ﬁ« o

Basic Datatypes

Booleans Numbers
f#t 1
ftf 1/2
1.0
Strings Characters
“hi” #\h

uh// # \ /\

L1sts

1 G A1

(list “apple” “banana” “carrot”)

(list 1 2 3)

(list 1 “carrot” 3 #t “cucumber”)

L1sts

4

In Racket, lists are recursively defined:
a list is either null, or a pair whose second item is a list.

Lists have two key methods: first and rest

> (first (list 1 2 3))
1

> (rest (list 1 2 3))
(list 1 2)

Control Flow

(if (=x5) test
f#t value if true
#1) value if false

(cond ((= x 0) (printf “x is 0”))
(=x1) (printf “xis 1))
(else (printf “x is greater than 17)))

Why are there so many parentheses?

4

4

A GODS LAMENT

SOME SAID THE WORLD SHOULD BE IN PERL;
SOME SAID IN LISP

NOW, HAVING GIVEN BCTH A WHIRL,

I HELD WITH THOSE WHO FAVORED PERL.
BUT I FEAR WE PASSEDTO MEN

A DISAPPOINTING FOUNDING MYTH,

AND SHOULD WE WRITE IT ALL AGAIN,

TD ENDIT WITH

A CLOSE -PAREN.

xkcd

Syntax

Leaf: a value that can’t be evaluated any further (also
called an “atomic value” or a “literal”)

Leaves are unparenthesized in Racket

Every non-leaf node in the syntax tree is marked by a
pair of parentheses

Special forms have a keyword after the open
parenthesis: (if el e2 e3)

Most other parentheses mark function calls

Variable definitions

Syntax: (define id e)
Example:

(define x 1)

> X
1

Functions

Syntax: (define (id) e)
Examples:

(define (add)
(+ 10 10))

Functions

Syntax: (define (id) e)
Examples:

(define (add)
(+ 10 10))

(define (hello-world)
(printf “Hello world!”))

Functions

Syntax: (define (id) e)
Examples:

(define (add)
(+ 10 10))

(define (hello-world)
(display “Hello world!”))

77777 77777

@z Warning: side effect @

Side effects

Side effect: any observable effect other than producing
a value

Functional programming languages tend to avoid side
effects (mutation is a kind of side effect)

Side effects make it harder to reason formally about a
program’s behavior

However, printing is very useful!

Racket printing

What's the difference between display, write, and
print?

What does displayln do?

Documentation

Racket Guide:

https: / /docs.racket-lang.org / guide /index.html

Racket Reference:

https:/ /docs.racket-lang.org / reference /index.html

https://docs.racket-lang.org/guide/index.html
https://docs.racket-lang.org/reference/index.html

Common Racket mistakes

Common Racket mistakes

. Wrap leaf values in parens: (17)

. Use operators in infix rather than prefix
position

. Put arguments in parentheses with function
name outside

. Use unexpected keywords

. Omit parentheses for non-leaf node

