WELLESLEY

W

Programming CS 251
Languages Fall 2021

Carolyn Anderson

Recap

What makes a PL functional?

They provide abstractions over functions

They treat functions like other values in the language
They emphasize recursion over iteration

They do not allow mutation

Side effects

Side effect: any observable effect other than producing
a value

Functional programming languages tend to avoid side
effects (mutation is a kind of side effect)

Side effects make it harder to reason formally about a
program’s behavior

However, printing is very useful!

Racket printing

What's the difference between display, write, and
print?

What does displayln do?

Making observations

More Racket

Language components

Expressions: bits of the language

(+12) “cat” (define (foo n) n)
Values: expressions that cannot be reduced any further
“cat” (define (foo n) n)

Declarations: bind variables to values
(define x 4)

More Racket: Values

Functions revisited

Syntax: (define (foo idy, ... idn) e)

T

parameters function body

Practice:

L 4

Write a function that takes a list and adds 5 to each item
in the list.

Practice:

4

Write a function that takes a number and counts down to
0 from that number.

> (countdown 6)

O -=-2NWPHO1O

Euclid’s algorithm for GCD

Find greatest common divisor of r1 and r2:

base case:
Ifrl1 =0:

return r2
If r2 =0:

return r1l

kth step:

If r1 and r2 are greater than 0:
rl / 12
GCD(r2, remainder)

More Racket: Definitions

Local binding

A let expression binds a set of variables for use
in the body of the let block.

(define (greet str)
(let ((greeting (string-append "hi " str)))

(display greeting)))

Local binding, take two

In a let expression, the right-hand side of a declaration
can’t refer to the left-hand side.
If we write:

(let ((a (+ a5))))
if a is not defined outside the scope of the let, the let

will throw an error.

Practice:

Write a function that takes a list of numbers and returns
the sum of their squares

> (sum-squares (1 2 3))
14

Practice:

4

Write a function that takes a number and counts up from
0 to that number.

> (countup 6)

OOk WwWN-O0

First class functions

4 ¢

In Racket, functions are values. This is because Racket has
first class functions: functions have all the rights and
privileges of other values.

Function Bill of Rights:

We the Racketeers hereby declare that functions:
Do not need to be named (lambdas)
Can be returned by functions

Can be arguments to functions

Anonymous Functions

A lambda expression is an anonymous function.
(define (fn)) is really short for (define fn (lambda))

(define (hello-world) (display “hello world!”))
(define hello-world (lambda () (display “hello world!)))

]

parameters function body

LLambdas

Lambda: anonymous function

(lambda (x y) (+ x y))

|]

list of arguments function body

Practice: write an anonymous function that returns the
second item in a list.

Letrec

This is a problem for declaring recursive functions, since

they refer to themselves!
Racket has another local binding construct for this
reason: letrec.
If we write:

(letrec ((a (+ a 5))))
The a in the right-hand side refers to whatever value the
a on the left-hand side has.

String-reverse using letrec

4 ¢

(define (reverse str) define helper function
(letrec ((helper / helper function arguments
(lambda (str x) ‘/
(if (= x (string-length str)) <«— base

case

()

(String-append recursive
(helper str (+ x 1)) «— call

(string (string-ref str x)))))))
(helper str 0)))

\ call helper function

Practice:

Rewrite count-up using letrec.

(define (count-help x y)
(display x)
(If (=xy)
(void)
(count-help (+ x 1) y)))

(define (count-up x)
(count-help 1 x))

Recursion versus iteration

How efficient is recursion anyway?

Recursion versus iteration

L 4

How efficient is recursion anyway?

Iterative Recursive

> (it-fac 4) > (fac 4)

res = res™1 (*4 (fac 3)) =

res = res:2 (: (* 3 (iac 2)))
o (4302t >

Tail recursion

There’s another way of writing this recursive function!
In tail recursion, the multiplication happens inside the
recursive call, rather than outside of it.

(define (tail-fac n)
(letrec ((helper
(lambda (n acc)
(if (=1 n)
acc
(helper (- n 1)
(" nacc))))))
(helpern 1)))

Tail recursion

L 4

How efficient is recursion anyway?

Original version Tail-recursive version
> (fac 4) > (tail-fac 4)
(* 4 (fac 3)) tail-fac 3 (4 1))

((

(*4 (* 3 (fac 2)) —7 (tail-fac 2 (* 3 4))
(" (
(" (2

(*4 (*3(*2 fac1)))) tail-fac 1 (* 2 12))
C4(3(21) & 4)

Practice:

Write two versions of string reverse: a tail-recursive and
a non-tail-recursive version.

4

Practice: Fizzbuzz

Count up from 0 to n in the following way:

If t

the num|

If t

the num|

If t

the num|

ber 1S divisi]
ber 1S divisi]

ber 1S divisi]

o)
o)
o)

e
e
e
Otherwise, print the num

by 3, print fizz
by 5, print buzz
by 3 and 5, print fizzbuzz

Der

