
CS 251Programming	
Languages Fall 2021

Carolyn Anderson

Recap

✦ They provide abstractions over functions

✦ They treat functions like other values in the language

✦ They emphasize recursion over iteration

✦ They do not allow mutation

What	makes	a	PL	functional?

Side	effects
✦ Side effect: any observable effect other than producing

a value

✦ Functional programming languages tend to avoid side

effects (mutation is a kind of side effect)

✦ Side effects make it harder to reason formally about a

program’s behavior

✦ However, printing is very useful!

Racket	printing
✦ What’s the difference between display, write, and

print?

✦ What does displayln do?

Making	observations

More	Racket

Language	components
✦ Expressions: bits of the language

(+ 1 2) “cat” (define (foo n) n)

✦ Values: expressions that cannot be reduced any further

 “cat” (define (foo n) n)

✦ Declarations: bind variables to values

 (define x 4)

More	Racket:	Values

Functions	revisited
Syntax: (define (foo id1, … idn) e)

parameters function body

Practice:
Write a function that takes a list and adds 5 to each item
in the list.

Practice:
Write a function that takes a number and counts down to
0 from that number.

> (countdown 6)

6

5

4

3

2

1

0

Euclid’s	algorithm	for	GCD

base case:

If r1 = 0:

 return r2

If r2 = 0:

 return r1

kth step:

If r1 and r2 are greater than 0:

 r1 / r2

 GCD(r2, remainder)

Find greatest common divisor of r1 and r2:

More	Racket:	Definitions

Local	binding

(define (greet str)

 (let ((greeting (string-append "hi " str)))

 (display greeting)))

A let expression binds a set of variables for use
in the body of the let block.

Local	binding,	take	two

In a let expression, the right-hand side of a declaration
can’t refer to the left-hand side.

If we write:

(let ((a (+ a 5))))

if a is not defined outside the scope of the let, the let
will throw an error.

Practice:
Write a function that takes a list of numbers and returns
the sum of their squares

> (sum-squares (1 2 3))

14

Practice:
Write a function that takes a number and counts up from
0 to that number.

> (countup 6)

0

1

2

3

4

5

6

First	class	functions
In Racket, functions are values. This is because Racket has
first class functions: functions have all the rights and
privileges of other values.

Function Bill of Rights:

We the Racketeers hereby declare that functions:

✦ Do not need to be named (lambdas)

✦ Can be returned by functions

✦ Can be arguments to functions

Anonymous	Functions

(define (hello-world) (display “hello world!”))

(define hello-world (lambda () (display “hello world!)))

A lambda expression is an anonymous function.

(define (fn)) is really short for (define fn (lambda))

parameters function body

Lambdas

Lambda: anonymous function

 (lambda (x y) (+ x y))

list of arguments function body

Practice: write an anonymous function that returns the
second item in a list.

Letrec

This is a problem for declaring recursive functions, since
they refer to themselves!

Racket has another local binding construct for this
reason: letrec.

If we write:

(letrec ((a (+ a 5))))

The a in the right-hand side refers to whatever value the
a on the left-hand side has.

(define (reverse str)

 (letrec ((helper

 (lambda (str x)

 (if (= x (string-length str))

 “”
 (string-append

 (helper str (+ x 1))

 (string (string-ref str x)))))))

 (helper str 0)))

String-reverse	using	letrec
define helper function

call helper function

helper function arguments

base
case

recursive
call

Practice:

(define (count-help x y)

 (display x)

 (if (= x y)

 (void)

 (count-help (+ x 1) y)))

(define (count-up x)

 (count-help 1 x))

Rewrite count-up using letrec.

Recursion	versus	iteration
How efficient is recursion anyway?

Recursion	versus	iteration

Iterative Recursive

> (fac 4)

(* 4 (fac 3))

(* 4 (* 3 (fac 2)))

(* 4 (* 3 (* 2 (fac 1))))

(* 4 (* 3 (* 2 1)))

> (it-fac 4)

res = res*1

res = res*2

res = res*3

res = res*4

How efficient is recursion anyway?

Tail	recursion
There’s another way of writing this recursive function!

 In tail recursion, the multiplication happens inside the
recursive call, rather than outside of it.

(define (tail-fac n)

 (letrec ((helper

 (lambda (n acc)

 (if (= 1 n)

 acc

 (helper (- n 1)

 (* n acc))))))

 (helper n 1)))

Tail	recursion
How efficient is recursion anyway?

Tail-recursive versionOriginal version

> (fac 4)

(* 4 (fac 3))

(* 4 (* 3 (fac 2)))

(* 4 (* 3 (* 2 (fac 1))))

(* 4 (* 3 (* 2 1)))

> (tail-fac 4)

(tail-fac 3 (* 4 1))

(tail-fac 2 (* 3 4))

(tail-fac 1 (* 2 12))

(24)

Practice:
Write two versions of string reverse: a tail-recursive and
a non-tail-recursive version.

Count up from 0 to n in the following way:

✦ If the number is divisible by 3, print fizz

✦ If the number is divisible by 5, print buzz

✦ If the number is divisible by 3 and 5, print fizzbuzz

✦ Otherwise, print the number

Practice:	Fizzbuzz

