Recap
Anonymous Functions

A lambda expression is an anonymous function. (define (fn)) is really short for (define fn (lambda ()))

(define (hello-world) (display "hello world!"))
(define hello-world (lambda () (display "hello world!")))
Lambda: anonymous function

(lambda (x y) (+ x y))

Practice: write an anonymous function that returns the second item in a list.
Normal local binding: bindings are parallel (right-hand side is ignorant of left-hand side)

(let ((cat-speak (printf "meow!")))
 (dog-speak (printf "woof!"))
 (unbound (cat-speak)))

unbound, going to throw error
Normal local binding: bindings are parallel
(right-hand side is ignorant of left-hand side)

(let ((bound
 (lambda (x)
 (if (= x 0)
 (printf "zero!"
 (bound (- x 1)))))))

I don’t know
I’m being
named!

uh oh! bound is undefined here, so we have no way to call the function in the recursive step!
Letrec: names given on the left are known on the right

(letrec ((bound (lambda (x)
 (if (= x 0)
 (printf "zero!"
 (bound (- x 1))))))))

I know I’m being named!

bound by the left-hand side, can be called recursively
String-reverse using letrec

(define (reverse str)
 (letrec ((helper (lambda (str x)
 (if (= x (string-length str))
 ""
 (string-append
 (helper str (+ x 1))
 (string (string-ref str x)))))))
 (helper str 0)))
Practice:

Rewrite string-reverse to be tail-recursive.
Formal Semantics
Formal Semantics

- Gives a way of representing the semantics of the language
- Helps us reason mathematically about program behavior
- Basic idea: write rules for how expressions get evaluated
- Two main styles:
 - **Big step semantics**: models the evaluation of each expression
 - **Small step semantics**: models the step-by-step evaluation of each expression
Language components

- **Expressions**: bits of the language

 (+ 1 2) “cat” (define (foo n) n)

- **Values**: expressions that cannot be reduced any further

 “cat” (define (foo n) n)

- **Declarations**: bind variables to values

 (let
Big step semantics: values

✦ Syntax:
 - Numbers: 0, 1, …
 - Strings: “donut”, “cookie”, …
 - Functions: (define (foo x) x), …
 - Booleans: #t, #f

✦ Evaluation:
 - Values evaluate to themselves.
Big step semantics: addition

- Syntax: (+ e1 e2)
 - e1 and e2 stand for arbitrary expressions
- Evaluation:
 1. Evaluate e1 to a value v1.
 2. Evaluate e2 to a value v2.
 3. Return the arithmetic sum of v1 and v2.
Big step semantics: addition

- Syntax: (+ e1 e2)
 - e1 and e2 stand for arbitrary expressions
- Evaluation:
 1. Evaluate e1 to a value v1.
 2. Evaluate e2 to a value v2.
 3. Return the arithmetic sum of v1 and v2.

Let’s test it out!
Big step semantics: addition

✦ Syntax: (+ e1 e2)
 - e1 and e2 stand for arbitrary expressions

✦ Evaluation:

1. Evaluate e1 to a value v1.
2. Evaluate e2 to a value v2.
3. If v1 and v2 are numbers, return the arithmetic sum of v1 and v2.
4. Otherwise, a dynamic type-checking error occurs.
Practice:

Write the big step semantics for string concatenation.
Big step semantics: string concatenation

- Syntax: `(string-append e1 e2)`
- Evaluation:
 1. Evaluate `e1` to a value `v1`.
 2. Evaluate `e2` to a value `v2`.
 3. If `v1` and `v2` are strings, return the concatenation of `v1` and `v2`.
 4. Otherwise, a dynamic type-checking error occurs.

Let’s test it out!
Approach 1: change the big step semantics

- Syntax: (string-append e1 ... e_n)
- Evaluation:
 1. For all e from e1 to e_n, evaluate e to a value v.
 2. If v1 ... v_n are strings, return the concatenation of v1 ... v_n.
 3. Otherwise, a dynamic type-checking error occurs.
Approach 2: treat it as “syntactic sugar”

- Syntax: (string-append e1 e2 e3)
- Evaluation:

 (string-append e1 e2 e3) evaluates to
 (string-append (string-append e1 e2) e3).
Big step semantics: notation

- The ↓ symbol is used to express evaluation assertions:

 \(e \downarrow v \) is pronounced “\(e \) evaluates to \(v \).”

- Translating our rules:

 Values: \(v \downarrow v \)

 Addition: If:
 - \(e_1 \downarrow v_1 \),
 - \(e_2 \downarrow v_2 \), and
 - \(v_1 \) and \(v_2 \) are numbers that sum to \(v \),

 Then \((+ e_1 e_2) \downarrow v\)
We can use this notation to write our semantics even more concisely as a “proof tree.”:

Addition:

\[
\begin{align*}
 e_1 & \downarrow v_1 \\
 e_2 & \downarrow v_2 \\
\end{align*}
\]

\[(+ e_1 e_2) \downarrow v \]

where \(v_1 \) and \(v_2 \) are numbers and \(v \) is the sum of \(v_1 \) and \(v_2 \)

This part is important!
Practice:

Model the derivation of \((+ 5 (+ 10 9))\) in the proof tree format.
In Racket, functions are values. This is because Racket has **first class functions**: functions have all the rights and privileges of other values.

Function Bill of Rights:

We the Racketeers hereby declare that functions:

- Do not need to be named (lambdas)
- Can be returned by functions
- Can be arguments to functions
Functions as values

Do we need to do anything special for functions?
No! Like other values, functions can be evaluated any further... until they are applied.

Syntax: `(lambda (id₁, ... idₙ) e)`

Semantics: \(v \downarrow v \)
Functions as values

Since functions are values, they need to be handled by our big step semantics for values. Do we need to do anything special for functions?

Syntax: \(\texttt{(lambda (id}_1, \ldots \texttt{id}_n) \texttt{e)} \)

Semantics: ?????