
CS 251Programming	
Languages Fall 2021

Carolyn Anderson

Recap

Our	big	step	semantics	for	Racket
✦ Values: expressions that cannot be reduced any further

Value rule: v ↓ v

✦ Expressions: bits of the language

Addition rule: e1 ↓ v1

 e2 ↓ v2

 (+ e1 e2) ↓ v

where v1 and v2 are numbers and v is the sum of v1 and v2

Language	components
✦ Values: expressions that cannot be reduced any further

✦ Expressions: bits of the language

✦ Declarations: bind variables to values

Function	application	
Syntax: (e1 e2)

function argument

Semantics: ????

What happens when a function is applied?

Function	application

First, there’s a variable binding part:

When a function is applied to a value, the value gets
bound to the function’s parameter inside the scope of
the function.

What happens when a function is applied?

Binding	as	substitution
The Substitution Model of Variable Binding:

When a value v is bound to an expression e, substitute
the value v for every unbound occurrence of e in the
scope of the binder.

Function	application

Let’s consider this function application:

 ((lambda (x) x) 5)

Syntax: (e1 e2)

Semantics: ???

Function	application

1. Bind the value to the function parameter within the
function body, using the substitution model of variable
binding.

((lambda (x) x) 5) (lambda (x) 5)

Syntax: (e1 e2)

Semantics: ???

Substitution	notation
We need notation to represent substitution:

e[x → v] represents the result of substituting all
unbound occurrences of x in e with v.

Substitution	notation
We need notation to represent substitution:

e[x → v] represents the result of substituting all
unbound occurrences of x in e with v.

e[x → v]

e[x ← v]

e[v/x]

Semantics	of	application

1. Bind the value to the function parameter within the
function body, using the substitution model of variable
binding.

Syntax: (e1 e2)

Semantics: ???

Semantics	of	application

0. Evaluate e1 to a value v1. If v1 is a function:

Syntax: (e1 e2)

Semantics: ???

1. Bind the value to the function parameter within the
function body, using the substitution model of variable
binding.

Semantics	of	application

0. Evaluate e1 to a value v1. If v1 is a function with
parameter x and body eb:

Syntax: (e1 e2)

Semantics: ???

1. Bind the value to the function parameter within the
function body, using the substitution model of variable
binding.

Semantics	of	application

0. Evaluate e1 to a value v1. If v1 is a function with
parameter x and body eb:

Syntax: (e1 e2)

Semantics: ???

2. Bind v2 to x within eb, using the substitution model
of variable binding.

1. Evaluate e2 to a value v2.

Semantics	of	application

Semantics: e1 ↓ (lambda (x) eb)

e2 ↓ v2

 (e1 e2)↓ eb[x → v2]

Syntax: (e1 e2)

0. Evaluate e1 to a value v1. If v1 is a function with
parameter x and body eb:

2. Bind v2 to x within eb, using the substitution model
of variable binding.

1. Evaluate e2 to a value v2.

Semantics	of	application
Let’s test our semantics!

Practice:
Write down the big step semantics for let.

Semantics:
Syntax: (let ((x e1)) e2)

Semantics	of	local	binding

Semantics:

e1 ↓ v

 (let ((x e1)) e2) ↓ e2[x → v]

Syntax: (let ((x e1)) e2)

Context
One property of our big step semantics is that it doesn’t
model context.

Our rules stipulate the same behavior for a given
expression regardless of where it occurs.

Side	effects	revisited
✦ Side effect: any observable effect other than producing

a value

✦ More formally:

An expression has a side effect if it changes its own
context.

✦ Mutation is a side effect because it changes a variable’s
value within the current scope (unlike let). This makes
the variable’s behavior context-dependent: you have to
know whether you are referencing it before or after the
mutation.

Side	effects	revisited
✦ An expression has a side effect if it changes its own

context.
✦ Errors are a kind of side effect. Why?

Side	effects	revisited
✦ An expression has a side effect if it changes its context.
✦ Errors are a kind of side effect. They halt evaluation,

making the evaluation of later expressions context-
dependent.

✦ Example program: e1 e2

If e1 results in an error, e2 will not be evaluated!

✦ Although functional programming languages are often

described as “side effect free”, they give rise to errors
just like any other language!

What	do	we	do	about	errors?
In our big step semantics, we can describe situations
where errors arise. But we won’t track errors, since that
requires representing the program context (hard 😢).

When we hit an error, we’ll just abandon the derivation.

