
CS 251: Programming Languages Fall 2015
ML Summary, Part 5

These notes contain material adapted from notes for CSE 341 at the University of Washington by Dan
Grossman. They have been converted to use SML instead of Racket and extended with some additional
material by Ben Wood.

Contents

Introduction to Delayed Evaluation and Thunks . 1

Lazy Evaluation with Delay and Force . 2

Streams . 4

Memoization . 6

Integrating Lazy Evaluation into the Language . 11

Introduction to Delayed Evaluation and Thunks

A key semantic issue for a language construct is when are its subexpressions evaluated. For example, in ML
(and similarly in Racket and most but not all programming languages), given e1 e2 ... en we evaluate the
function arguments e2, ..., en once before we execute the function body and given a function fn ... => ...

we do not evaluate the body until the function is called. This rule (“evaluate arguments in advance”) goes by
many names, including eager evaluation and call-by-value. (There is a family of names for parameter-passing
styles referred to with call-by-.... Many are not particularly illuminating or downright confusing names, but
we note them here for reference.) We can contrast eager evaluation with how if e1 then e2 else e3

works: we do not evaluate both e2 and e3. This is why:

fun iffy x y z = if x then y else z

is a function that cannot be used wherever you use an if-expression; the rules for evaluating subexpressions
are fundamentally different. (We studied this a bit when considering syntactic sugar early in our exploration
of Racket.) For example, this function would never terminate since every call makes a recursive call:

fun facty n =

iffy (n=0) 1 (n * (facty (n-1)))

However, we can use the fact that function bodies are not evaluated until the function gets called to make
a more useful version of an “if function”:

fun ifok x y z =

if x then y () else z ()

Now wherever we would write if e1 then e2 else e3 we could instead write

ifok e1 (fn () => e2) (fn () => e3)

The body of ifok either calls the zero-argument function bound to y or the zero-argument function bound
to z. (Actually, as we know, ML does not have zero-argument functions – these are actually one-argument

1

functions whose argument is of type unit. Since there is only one such value, (), we pattern-match on
it in the function definition to be explicit: fn () =>) So this function is correct (for non-negative
arguments):

fun fact n =

ifok (n=0) (fn () => 1) (fn () => n * (fact (n-1)))

Though there is certainly no reason to wrap ML’s “if” in this way, the general idiom of using a “zero-
argument” function (i.e., a function with argument type unit) to delay evaluation (do not evaluate the
expression now, do it later when/if the function is called) is very powerful. As convenient terminology/jargon,
when we use such a function to delay evaluation we call the function a thunk. You can even say, “thunk the
argument” to mean “use fn () => e instead of e”.

Using thunks is a powerful programming idiom. It is an idiom, not a new language feature, and is not specific
to ML or Racket. (When done implicitly in the language instead of using explicit thunking as we have used
here, variations on this technique are sometimes called call-by-name. We will use “thunking” or “delayed
evaluation”.)

Lazy Evaluation with Delay and Force

Suppose we have a large computation that we know how to perform but we do not know if we need to
perform it. Other parts of the program know where the result of the computation is needed and there may
be 0, 1, or more different places. If we thunk, then we may repeat the large computation many times. But if
we do not thunk, then we will perform the large computation even if we do not need to. To get the “best of
both worlds,” we can use a programming idiom known by a few different (and perhaps technically slightly
different) names: lazy evaluation, call-by-need, promises. The idea is to use mutation to remember the result
from the first time we use the thunk so that we do not need to use the thunk again – it will be called at
most once.

One simple implementation in ML would be:

signature PROMISE =

sig

(* Type of promises to produce an ’a. *)

type ’a t

(* Make a promise for a thunk. *)

val delay : (unit -> ’a) -> ’a t

(* If promise not yet forced, call thunk and save.

Return saved thunk result. *)

val force : ’a t -> ’a

end

structure Promise :> PROMISE =

struct

(* Before a promise has been forced, it is just a thunk. After it has

been forced, it is a value. *)

datatype ’a promise = Thunk of unit -> ’a

| Value of ’a

(* Hide limited mutation inside ADT. *)

2

type ’a t = ’a promise ref

(* Wrap the thunk to make a promise. *)

fun delay th = ref (Thunk th)

(* If the promise is already a value, return it.

Otherwise, call the thunk and save and return its result. *)

fun force p =

case !p of

Value v => v

| Thunk th => let val v = th ()

val _ = p := Value v

in v end

end

We represent a promise by a reference cell holding either a Thunk carrying an unevaluating thunk (if the
promise has never been “forced”) or a Value carrying the value resulting from the evaluation of the thunk
when the promise was first “forced”.

We can create a thunk and pass it to delay. This returns a Thunk carrying the unused thunk we provided.
Then force, if it sees the promise has not yet been forced, calls the thunk and then uses mutation to
change the reference to hold the result of the thunk, wrapped as a Value. That way, any future calls to
force on the same promise will not repeat the computation. Ironically, while we are using mutation in our
implementation, this idiom is quite error-prone unless the thunk passed to delay does not have side effects
or rely on mutable data, since those effects will occur at most once and it may be difficult to determine when
the first call to force will occur.

Consider this silly example where we want to multiply the result of two expressions e1 and e2 using a
recursive algorithm (of course you would really just use * and this algorithm does not work if e1 produces
a negative number):

fun mult 0 y = 0

| mult 1 y = y

| mult x y = y + (mult (x-1) y)

Now calling mult e1 e2 evaluates e1 and e2 once each and then does 0 or more additions. But what if e1
evaluates to 0 and e2 takes a long time to compute? Then evaluating e2 was wasteful. So we could thunk
it:

fun mult 0 ythunk = 0

| mult 1 ythunk = ythunk ()

| mult x ythunk = (ythunk ()) + (mult (x-1) ythunk)

Now we would call mult e1 (fn () => e2). This works well if e1 evaluates to 0, fine if e1 evaluates to 1,
and terribly if e1 evaluates to a large number. After all, now we evaluate e2 on every recursive call. So let’s
use delay and force to get the best of both worlds:

open Promise

mult e1 let val p = delay (fn () => e2)

in (fn () => force p) end

Notice we create the delayed computation once before calling mult, then the first time the thunk passed

3

to mult is called, force will evaluate e2 and remember the result for future calls to force p. A simpler
approach to rewrite mult to expect a promise rather than a thunk:

fun mult 0 _ = 0

| mult 1 ypromise = force ypromise

| mult x ypromise = (force ypromise) + (mult (x-1) ypromise)

mult e1 (delay (fn () => e2))

Some languages, most notably Haskell, use this approach for all function calls, i.e., the semantics for function
calls is different in these languages than in ML, Racket, and most others: If an argument is never used it is
never evaluated, else it is evaluated only once. This is called call-by-need whereas all the languages we will
use are call-by-value (arguments are fully evaluated before the call is made).

a.k.a. Suspensions

Promises are also known as suspended computations or suspensions. SML/NJ (but not the SML language in
general) includes a library just like the above, using this alternative terminology: http://www.smlnj.org/

doc/SMLofNJ/pages/susp.html

Streams

A stream is an infinite sequence of values. We obviously cannot create such a sequence explicitly (it would
literally take forever and consume infinite storage resources), but we can create code that knows how to
produce the infinite sequence and other code that knows how to ask for however much of the sequence it
needs.

Streams are very common in computer science. You can view the sequence of bits produced by a synchronous
circuit as a stream, one value for each clock cycle. The circuit does not know how long it should run, but it
can produce new values forever. The UNIX pipe (cmd1 | cmd2) is a stream; it causes cmd1 to produce only
as much output as cmd2 needs for input. Web programs that react to things users click on web pages can
treat the user’s activities as a stream — not knowing when the next will arrive or how many there are, but
ready to respond appropriately. More generally, streams can be a convenient division of labor: one part of
the software knows how to produce successive values in the infinite sequence but does not know how many
will be needed and/or what to do with them. Another part can determine how many are needed but does
not know how to generate them.

There are many ways to code up streams; we will take the simple approach of representing a stream as
a thunk that when called produces a pair of (1) the first element in the sequence and (2) a thunk that
represents the stream for the second-through-infinity elements. (Actually, we will need to tweak this slightly
to satisfy the ML type system, but let’s try pairs first, as it is instructive.)

We could (almost) take the first 3 elements of a stream as v1, v2, and v3 as follows:

let val (v1,s1) = s ()

val (v2,s2) = s1 ()

val (v3,s3) = s2 ()

in ... end

Consider the type of s2. Since it is called on () and matched with (v3,s3), it must be a function of

4

http://www.smlnj.org/doc/SMLofNJ/pages/susp.html
http://www.smlnj.org/doc/SMLofNJ/pages/susp.html

type unit -> ’a * ..., where v3 : ’a. But if we continue backwards, we see that s1 must have type
unit -> (’a * (unit -> (’a * ...))) and s must have type

unit -> (’a * (unit -> (’a * (unit -> (’a * ...))))

Already, it is clear that we cannot give a single type to all the stages of the same stream, since each earlier
stage of the stream has a type that is one layer larger. However, if we continue forward, deeper into the
stream, it is clear that the ... here is not accidental: an infinite stream results in an infinitely large type.
Furthermore, the types of each stage of the stream are related: the type appears to be (infinitely) recursive.
Intuitively, we would like to type streams with:

type ’a stream = unit -> (’a * ’a stream)

Unfortunately, the ML type alias mechanism does not support recursive types, but, as we have seen with
lists, datatype does. We therefore use the following types to describe streams:

datatype ’a scons = Scons of ’a * (unit -> ’a scons)

type ’a stream = unit -> ’a scons

The type unit -> ’a scons describes a stream: a thunk that returns a pair of element and another stream
(i.e., thunk) wrapped in a constructor of the ’a scons type. It is a bit odd to have a datatype (a “one-of”
or “sum” type) with only one constructor, but the key here is that datatype bindings allow recursive type
definitions.

Defining thunks to produce streams typically uses recursion. Here are three examples:

fun ones () = (1,ones)

val rec ones = fn x => Scons (1, ones)

val nats =

let fun f x = (x, fn () => f (x + 1))

in fn () => f 0 end

val powers2 =

let fun f x = (x, fn () => f (x * 2))

in fn () => f 1 end

Given this encoding of streams and a stream s, we could get the first, second, and third elements via:

let val Scons (v1,s1) = s ()

val Scons (v2,s2) = s1 ()

val Scons (v3,s3) = s2 ()

in ... end

Usually it is odd to pattern-match a datatype constructor in a val-binding, but here, with only one constructor
in the datatype, it is guaranteed to succeed.

We could write a higher-order function that takes a stream and a predicate function and returns the index
of the first stream element for which the predicate returns true:

5

fun firstindex stream f =

let fun consume stream ans =

let val Scons (v,s) = stream ()

in

if f v then ans else consume s (ans + 1)

end

in

consume stream 0

end

As an example, firstindex powers2 (fn x => x=16) evaluates to 3.

All the streams above can produce their next element given at most their previous element. So we could
use a higher-order function to abstract out the common aspects of these functions, which lets us put the
stream-creation logic in one place and the details for the particular streams in another. This is just another
example of using higher-order functions to reuse common functionality:

fun make_stream step init =

let fun f x = Scons (x, fn () => f (step x))

in fn () => f init end

val nats = make_stream (fn x => x + 1) 0

val powers2 = make_stream (fn x => x * 2) 1

Memoization

An idiom related to lazy evaluation that does not actually use thunks is memoization. If a function does
not have side effects, then if we call it multiple times with the same argument, we do not actually have to
compute the answer more than once. Instead, we can look up what the answer was the first time we called
the function with the argument.

Whether this is a good idea or not depends on trade-offs. Keeping old answers in a table takes space and
table lookups do take some time, but compared to repeating expensive computations, it can be a big win.
Again, for this technique to be correct in the first place requires that, given the same arguments, a function
will always return the same result and have no side effects. So being able to use this memo table (i.e., do
memoization) is yet another advantage of avoiding mutation.

To implement memoization we do use mutation: Whenever the function is called with an argument we have
not seen before, we compute the answer and then add the result to the table (via mutation).

As an example, let’s consider 3 versions of a function that takes an n and returns the nth Fibonacci number.
A natural recursive definition is:

fun fib 0 = 1

| fib 1 = 1

| fib n = fib (n-1) + fib (n-2)

Unfortunately, this function takes exponential time to run. We might start noticing a pause for fib 30,
and fib 40 takes about a thousand times longer than that... We have seen a tail-recursive approach that
“counts up” and remembers previous answers during one call, e.g.:

fun fibtail 0 = 1

6

| fibtail 1 = 1

| fibtail x =

let fun f (acc1, acc2, y) =

if y=x

then acc1 + acc2

else f (acc1 + acc2, acc1, y + 1)

in f (1,1,3) end

This takes linear time, but requires a quite different approach to the problem. With memoization we can
turn fib into an efficient algorithm with a technique that works for lots of algorithms. It is closely related
to “dynamic programming,” which you should learn a bit about in CS 231. Below is the version that does
this memoization. (We include the definition of an assoc function which we have written a couple times
previously – it looks up the value corresponding to a given key in an association list. However, this is a
linear-time lookup operation. For a real implementation, it would be better to choose a data structure with
better lookup times, such as a hash table.)

fun assoc x [] = NONE

| assoc x ((k,v)::rest) = if k=x then SOME v else assoc x rest

val fibmemo =

let val memo = ref []

fun f x =

case assoc x (!memo) of

SOME y => y

| NONE => let val y = (case x of

0 => 1

| 1 => 1

| n => (f (n-1)) + (f (n-2)))

val _ = memo := ((x,y)::(!memo))

in y end

in f end

It is essential that different calls to f use the same mutable memo table: if we create the table inside the call
to f, then each call will use a new empty table, which is pointless. But we do not put the table at the top
level – that would be bad style since its existence should be known only to the implementation of fibmemo.
Closures work out very nicely here.

Why does this technique work to make computing larger Fibonacci numbers complete quickly? Because
when we evaluate f (n-2) on any recursive calls, the result is already in the table, so there is no longer
an exponential number of recursive calls. Another nice effect is that calling fibmemo a second time on the
same number (or any smaller number!) will complete even more quickly since the answer will be in the
memo-table.

For a large table, using an association list is a poor choice (try a hash table or tree, perhaps), but it is simple
and suffices to demonstrate the concept of memoization.

More Approaches to Memoization

Our memoized fib implementation had some nice performance properties, but its code was not as clean
as could be. It interleaves the simple definition of what fib computes with the implementation details of
how to compute it efficiently. Furthermore, under this approach, every function we wish to memoize has to

7

be converted, even if they will follow a similar pattern. In this section, we present two alternatives to help
separate the what from the how of memoization.

Refactoring Memoization: False Start

Our first approach allows memoization of any single-argument function without modifying the original func-
tion (subject to the determinacy and purity requirements expressed above). It is a simple higher-order
function that takes the function to memoize and returns a version wrapped up to first check the memo table
before computing the result.

fun memotop f =

let val mem = ref []

in fn x =>

case assoc x (!mem) of

SOME y => y

| NONE => let val y = f x

val _ = mem := ((x,y)::(!mem))

in y end

end

For example, for fib, we can define a memoized implementation using the original naturally recursive
definition:

val fibtop = memotop fib

This approach is beautiful in the way that it fully separates the function we compute and the means of
memoization, but it is significantly less efficient than our original memoized fib implementation. Since
it intercepts only top-level calls to the function (and not any recursive calls), computing fibtop n is still
O(2n) the first time. Future calls on the same input will become simple memo table lookups, but calls on
any other input will require the full computation: this method fills only one entry in the memo table per
top-level call (not all of 0 through n as before). Its utility is thus questionable.

OPTIONAL: An Elegant and Efficient Memoziation Solution.

With a simple change to how we define the functions we wish to memoize, we can support a clean separation
of concerns between the functions themselves and the mechanism of memoization (or, for that matter, any
other “interjection” function).

Let us begin by defining a version of fib in a style called open recursion:

fun fibopen fib 0 = 1

| fibopen fib 1 = 1

| fibopen fib n = fib (n-2) + fib (n-1)

The function fibopen takes one additional argument: a function to call for recursive calls instead of calling
itself. This is a necessary change to the original clean naturally recursive definition, but compared to our
first memoized implementation it is minimal and, with good naming choices, the intent remains clear. The
fibopen function alone is not quite useful yet. Where do we get this first argument? The answer is to
use a fixed-point combinator to implement recursion, as in the lambda calculus. Here in ML, which already

8

supports recursion, this is much simpler than, e.g. the Y combinator in the untyped lambda calculus. We
define a simple fix function:

fun fix f x = f (fix f) x

Its definition is exactly the equivalence of a fixed point (not discussed here). Notice its type:

((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

It takes an (’a -> ’b) -> ’a -> ’b function and produces an ’a -> ’b function. Any open recursive
function such as fibopen has a compatible type for fix’s first argument. By partially applying itself
to its first argument, fix produces a function of the correct type to pass as the first argument to its
argument function (e.g., fibopen). Furthermore, the resulting function acts just like the one currently being
evaluated...

Consider the use of fix as partially applied to fibopen:

val fib = fix fibopen

This produces a function that, when called on an integer, n, calls fibopen and either returns a result
immediately in a base case of fibopen or calls the first argument to fibopen to perform recursion. The key
is that this first-argument function in fibopen is exactly the partial application of fix to fibopen — or,
a function that acts identically to the one we bound to fib imeediately above! Thus we have a recursive
implementation of fib.

Open recursion is the key to implementing recursion via fixpoint combinators (as in the lambda calculus
or elsewhere), but it also appears in key semantic features of object-oriented languages: late binding and
dynamic method dispatch. (We will return to these later in the course.) Open recursion can be used to support
a pattern sometimes called function inheritance. (Again, the similarity with object-oriented terminology is
no accident.)

Now, to introduce memoization, we can define a completely independent memoization function, also in open
recursive style. The make_memo() thunk, defined below, produces a new open recursive memoization function
when call.

fun make_memo () =

let val mem = ref []

(* In open recursive form: *)

fun memf f x =

case assoc x (!mem) of

SOME v => v

| NONE => let val v = f x

val _ = mem := ((x,v)::(!mem))

in v end

in memf end

We could call the result of make_memo () recursively with fix, but, with an empty memo table to start, it
would never terminate on any input. It is useful only in composition with some other computation, as with
fibopen:

val fibmemo = fix (make_memo () o fibopen)

9

Now, when it finds no value in its memo table, the resulting memf function will call fibopen to get a result.
If fibopen does not hit the base case, it will use its first argument to perform recursion. Its first argument
is a function that first checks the memo table for its argument before falling back to fibopen!

Thus, every recursive level of a call to fibmemo inspects the memo table before resorting to the original
definition. This approach achieves the performance benefit of the memo table while organizing code in a
way that keeps the separate concerns of Fibonacci computation, memoization, and their composition entirely
separate code. It is thus easy to plug in other computations and other interjections (other than memoization).

If desired (it may make more sense while exporing the idea initially), it is also possible to interleave the
fixpoint computation with the memoization code as follows, while still keeping the Fibonacci computation
separate:

fun memoize f = (* difference: f as arg to memo construction *)

let val mem = ref []

fun memf x = (* difference: capture f in closure *)

case assoc x (!mem) of

SOME v => v

| NONE => let val v = f memf x (* difference: explicitly fix *)

val _ = mem := ((x,v)::(!mem))

in v end

in f memf end

val fibmemo’ = memoize fibopen

Finally, as an example of another “analysis” to interleave with open recursive computations, consider logging:

fun log name arg_to_s result_to_s f =

let fun wrap indent x =

let val _ = print (indent ^ name ^ " " ^ arg_to_s x ^ "\n")

val v = f (wrap (" " ^ indent)) x

val _ = print (indent ^ "=> " ^ result_to_s v ^ "\n")

in v end

in wrap "" end

val fiblog = log "fib" Int.toString Int.toString fibopen

Try it to see what happens! Since it requires another argument to be passed for indentation, this version of
logging cannot quite be used with our fix as is. Removing the indentation would suffice to allow it. Some
additional plumbing could support the current logging function, but we will end our discussion here. Deeper
discussions of this topic (using other languages) can be found here:

• https://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf. Sections 1, 2, and 2.2 should
be accessible to a motivated CS 251 reader. Additonal sections require some extra background beyond
what 251 covers, but this background could be great material for a final project...

• http://matt.might.net/articles/implementation-of-recursive-fixed-point-y-combinator-in-javascript-for-memoization/

• http://adriansampson.net/blog/functioninheritance.html

10

https://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf
 http://matt.might.net/articles/implementation-of-recursive-fixed-point-y-combinator-in-javascript-for-memoization/
http://adriansampson.net/blog/functioninheritance.html

Integrating Lazy Evaluation into the Language

We have discussed some programming idioms that exploit the idea of lazy evaluation by explicitly delaying
computation with thunks. Some languages (most notably Haskell) integrate lazy evaluation directly into the
language at the level of its semantics. In this section, we consider the implications of this decision briefly.

Essentially, every variable binding (including function calls, where parameters are bound to arguments) in
a lazy language such as Haskell implicitly creates promises of its arguments rather than evaluating them
eagerly. Uses of those bindings then implicitly force these promises. Only if the arguments are needed
are they actually evaluated. As Haskell is a functional language similar to ML, this laziness cascades very
clearly. Given f (g x), the expression producing the value to be bound to x might not be evaluated until the
function call g x is evaluated (if this is the first time x has been used). But g x itself will not be evaluated
unless needed by f, and the call to f will not be evaluated unless its result is actually needed, and so on.

This pattern is powerful. For example, streams become much less distinguishable from lists (think infinite
lists). This pattern also introduces some complications in reasoning about program behavior. If everything
is lazily evaluated, it is difficult to reason about the order in which expressions will get evaluated (or whether
they will be evaluated at all). In a pure setting, without side effects, this is manageable: order of evaluation
does not matter. However, just as discussed with promises and memoization, side effects throw a wrench in
the works, since their order typically matters. For this reason, side effects are generally banned (or at least
managed very carefully) in languages that use lazy evaluation. Regardless of whether side effects are present,
laziness can complicate control over space usage. In a language with eager evaluation, it is relatively clear
when environments will become unreachable (and thus available for GC). With lazy evaluation, the difficulty
in predicting evaluation order means that it is difficult to predict how long large environments linger, still
referenced by unevaluated thunks.

We will not have time to explore laziness (including the very interesting mechanism used to deal with side
effects in Haskell) beyond this cursory treatment in this course.

Please see Harper, Programming in Standard ML, Chapter 15 for more extensive discussion of lazy data
structures and functions in SML/NJ: http://www.cs.cmu.edu/~rwh/smlbook/book.pdf

If you are curious about Haskell, see https://www.haskell.org/ or http://learnyouahaskell.com/.

Any topics extending from here would make great topics for final projects.

11

http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
https://www.haskell.org/
http://learnyouahaskell.com/

