Immutability: obstacle or tool?

Discuss based on:
— Programming experience in 251 and previously
— Readings about language implementation and GC

» Efficiency?

* Reliability?

» Ease of making/avoiding mistakes?
» Clarity?

» Try for at least 3 pros and 3 cons; OK to disagree.

“In a world where bindings and values
are immutable...”

* Have you noticed?

+ Patterns for accumulating results
(when your Java brain says "x++", etc.):

— Build result recursively

— Create fresh copy

— "Thread state through" in the style of foldl
» Small function "does one step"
* HOF passes resulton to the next step.

Cannot tell if you copy

(define (sort-pair p)
(if (< (car p) (cdr p))

P
(cons (cdr p) (car p))))

(define (sort-pair p)
(if (K (car p) (cdr p))
(cons (car p) (cdr p))
(cons (cdr p) (car p))))

Without mutation, these two implementations are indistinguishable
— Change at any time without introducing bugs outside.

Motivating examples/slides adapted from Dan Grossman

Suppose we had mutation...

(define x (mcons 3 4))

defi t-pai

(define y (sort-pair x)) x —»[377]
; mutate car of x to hold 5 ?
(set-mcar! x 5) Y,,

(define z (mcdr y))
* What is z?
— Depends on sort-pair implementation
* Document and be very careful.
» Changing implementation requires changing uses

This code is close to (but not quite) working Racket...

9/22/15



An even better example

(define (append xs ys)
(if (null? xs)
ys
(cons (car xs) (append (cdr xs) ys))))
(define x (list 2 4)
(define y (list 5 3 0))
(define z (append x y))

x = [2] D[4 ]~
y >[5 3 0

z —

or ?
x > [ 2] {4 ~7]
— [5] P[3] plol~]
z — [2] 4] P 5] 3] p{0]7]

Java security nightmare (really happened)

class ProtectedResource {
private Resource theResource = ..
private String[] allowedUsers = ...;

public String[] getAllowedUsers() {
return allowedUsers;

.7

}
public String currentUser() { ... }
public void useTheResource () {
for (int i=0; i < allowedUsers.length; i++) ({
if (currentUser () .equals (allowedUsers[i])) {
... // access allowed: use it
return;
}
}

throw new IllegalAccessException();

Mutant users!

The problem:

p.getAllowedUsers () [0] = p.currentUser();
p.useTheResource() ;

The fix:
public String[] getAllowedUsers () {

. return a copy of allowedUsers ..

}

Could this happen without mutability?

A biasing on aliasing

Immutability
Aliasing choices do not affect correctness, just performance.
Other code can’t break your code.
Changing your choice can’t break other code.
Document what, not how.

Start with safety, optimize for performance.

Mutability
Aliasing choices do affect correctness and performance.
Other code can break your code, depending on your choice.

Changing your choice can break other code.
Document what and how.

Start with performance (maybe), optimize for safety.

9/22/15



A broader PL theme:

* Limiting how programs canbe
expressed can be very useful!

* Not limiting what computable functions
can be implemented, just how.

* Less is more (reliable)?

9/22/15



