Lisp/Racket and Implementation

Garbage Collection
Later:

... Programs as Data

... Eval and Interpreters

Language Definition vs. Implementation

Mo sora e |

Ideally distinct, but definitely influence each other.
¢ Impossible/infeasible language features?

Some languages are defined by implementations:
¢ Abstraction?

* Can be complicated, difficult to reason about
¢ But high-level implementation can help understand definition.
May over-fit to current system, introduce unintended corner cases

Tends to happen early in language development or when the goalis to
"just hack something up" instead of design a clean abstraction.

¢ Formal definitions first.

Some practicalities of implementation crept into surface of language.
Some "implementation details" should have been indefinition.
Definition forced new implementation featuresand simplified others.

IBM 704

Lisp Memory Model

Cons cell: IBM 704 register/

memory location/
word structure

Atom:

(cons 'A (cons 'B (cons 'C null)))

Racket syntax (Lisp uses
slightly different names,
e.g. nil for null)

9/23/15

(car (cons 'A (cons 'B (cons

subexpression result

/

expression result

N /

'C null))))

subexpression result

subexpression result

/

How do we remember partial result and
“what to do next”?

(car (cons 'A (cons 'B (cons 'C null))))
Garbage:

cellsthat will never be used again,
but still occupy storage space.

expression result

N\

Where are these
data stored?

Simplified Machine Model

fixed # of fixed size
Registers Code

Program
Counter

Environment
Pointer

Data

Stack

Heap

Storage (240 view)
Heap
* Dynamically allocated data..
Stack

* Racket: cons cells!

¢ Local variables.

e Arguments, return values.

* Racket: lots of cons cells!

* Where to continue evaluating
after current function call/ * ... more later for first-class
expression. functions...

* Not the full story for firstclass
functions...

9/23/15

Garbage Collection (GC)

Every cell requires ablock of the available fixed-size heap.

Acell is garbage once the remainder of evaluation will never
access it.

Garbage collection:
Reclaim storage used for garbage cells.

* When storage full (or sooner), reuse garbage-filled space for new cells.

Required/invented to implement Lisp.

Lisp/Racket programs tend to create new cells very rapidly (evenvs. Java)
* No mutation => create fresh copies instead of modifying

* Cells become garbage almost as rapidly as they are created.

* Can fill up memory rapidly - much of it is garbage.

recursive

GC: Reachability

Goal: Reclaim storage used for all garbage cells.

Reality? (let ([garbage (list 1 2 3)1])
(if e (length garbage) 0)

Achievable goal: Reclaim storage used for all unreachable cells.
* All unreachable cells are garbage.
* Some garbage cells arereachable.

A cell is reachable if itis:

s | a subexpression of the expression currently being evaluated; or
roo
bound in the current environment; or

heap

{ + bound in the environment of any reachable closure; or
cases

the referent of the car or cdr of any reachable cons cell.

expression result

(car (cons 'A (cons 'B (cons 'C null))))

Unreachable cells

k////’

N\
N

Mark-Sweep

Roots Heap

/

9/23/15

Lisp Memory Model

Cons cell:

(cons 'A (cons 'B (cons 'C null)))

IBM 704
register/memory
location/word

Atom:

Racket syntax (Lisp uses slightly
different names, eg nil for null)

Mark-Sweep: Mark

Roots Heap
N\
N

Mark-Sweep: Clear

Roots Heap

-

N\
N
—

Mark-Sweep: Mark

Roots Heap

-

AN
N
T

AN

e

9/23/15

Mark-Sweep: Mark

Roots

Heap
’/‘1
AN

Mark-Sweep: Mark

Roots

—\

Hea

—

ST

19

Mark-Sweep: Mark

Roots

—_—

I
(]
Q
T

Mark-Sweep: Sweep

Roots

Heap

e wil
P

21

9/23/15

