ML Modules
and Abstract Data Types

Hiding implementation details is the most important strategy
for writing correct, robust, reusable software.

Topics:

e ML structures and signatures.

* Abstraction for robust library and client+library code.
¢ Abstraction for easy change.

¢ ADB and functions as data.

Hiding with functions

procedural abstraction

Hiding implementation details is the most important strategy for
writing correct, robust, reusable software.

fun = x*2
Canyou tell the difference? £yn = xt+x
val =2
- double 4; fun = LR
fun =

val it : int = 8 s S 0y =y
| =
help (x-1) (y+1)
in help x x end

“Private” top-level functions would also be nice...
* share a "private" helper function

structure =
struct bindings end

structure (module)
namespace management and code organization

structure =
struct

fun 0=1

| = x * fact (x-1)

val = Math.pi / 2

fun =x * 2
end
outside:
val = List.map MyMathlib.fact [1,3,5,7,9]

adapted from slides by Dan Grossman

signature =
sig binding-types end

signature
type forastructure (module)

List of bindings and their types:
variables (incl. functions), type synonyms, datatypes, exceptions

Separate from specific structure.

signature =
sig
val : int -> int
val : real
val : int -> int
end

10/8/15

structure Name :> NAME =

struct bindings end

ascription
(opaque — will ignore other kinds)

Ascribing a signature to a structure
* Structure must have all bindings with types asdeclared in signature.
signature MATHLIB =

sig
val fact : int -> int .
val half pi : real Ab Re_al pow:r..d_
val doubler : int -> int straction and Hiding
end

structure MyMathLib :> MATHLIB =
struct
fun fact 0 =1
| fact x = x * fact (x-1)
val half pi = Math.pi / 2
fun doubler x = x * 2
end

Hiding with signatures

MyMathLib.doubler unbound (not in environment) outside module.

signature MATHLIB2 =

sig
val fact : int -> int
val half pi : real

end

structure MyMathLib? :> MATHLIB2 =
struct
fun fact O 1
| fact x x * fact (x-1)
val half pi = Math.pi / 2.0
fun doubler x = x * 2
end

Abstract Data Type

type of data and operations on it

Example: rational numbers supporting add and toString

structure Rational =
struct
datatype rational = Whole of int
| Frac of int*int
exception BadFrac

(* see adts.ml for full code *)
fun make frac (x,y) =
fun add (rl,r2) = ...

fun toString r = ...
end

Library spec and invariants

External properties [externally visible guarantees, up to library writer]
* Disallow denominators of0
* Return strings in reduced form (“4” not “4/1”,“3/2” not “9/6”)
* No infinite loops or exceptions

Implementation invariants [not in external specification]
* All denominators >0
* All rational values returned from functions are reduced

Signatures help enforce internal invariants.

10/8/15

More oninvariants

Our code maintains (and relies) on invariants.

Maintain:

* make_frac disallows 0 denominator, removes negative denominator, and
reduces result

* add assumes invariants on inputs, calls reduce if needed

Rely:
* gcd assumes its arguments are non-negative
* add uses math properties to avoid calling reduce
* toString assumes its argument is in reduced form

A first signature

With what we know so far, this signature makes sense:
* Helper functions ged and reduce not visible outside the module.

signature RATIONAL OPEN = Attempt #1
sig

datatype rational = Whole of int

| Frac of int*int
exception BadFrac
val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string
end

structure Rational :> RATIONAL OPEN = ...

Problem: clients can violateinvariants

Create values of type Rational.rational directly.

signature RATIONAL OPEN =
sig
datatype rational = Whole of int
| Frac of int*int

end

Rational.Frac(1,0)
Rational .Frac(3,~2)
Rational.Frac(9,6)

Solution: hide more!

ADT must hide concrete type definition so clients cannot
create invariant-violating values of type directly.

This attempt goes too far: type rational is not known to exist

signature RATIONAL WRONG = Attempt #2
sig

exception BadFrac
val make frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL_WRONG =

10/8/15

Abstract the type! (Really Big Deal!)

 Client can pass them around, but can]

Type rational exists, manipulate them only through module.
but representation absolutely hidden. J

signature/RATIONAL = m
sig
type rational | Only way to make It rational.]
exception BadFr

Only operations val make frac <~ 1int * int -> rational
onrational. val add : rational * rational -> rational
val toString : rational -> string

end

structure Rational :> RATIONAL =

Module controls all operations with rational,
so client cannot violate invariants.

Abstract Data Type

Abstract type of data + operations on it

Outside of implementation:

* Values of type rational can be
created and manipulated only through ADT operations.

« Concrete representation of values of type rational
is absolutely hidden.

signature RATIONAL =
sig
type rational
exception BadFrac
val make frac : int * int -> rational

Abstract Data Types: two key tools

Powerful ways to use signatures for hiding:

1. Deny bindings exist.
Especially val bindings, fun bindings, constructors.

2. Make types abstract.
Clients cannot create or inspect values of the type directly.

val add : rational * rational -> rational
val toString : rational -> string
end
structure Rational :> RATIONAL = ... s
A cute twist

In our example, exposing the Whole constructor is no problem

In SML we can expose it as a function since the datatype binding in the
module does create such a function

« Still hiding the rest of the datatype

« Still does not allow using Whole as a pattem

signature RATIONAL WHOLE =

sig
type rational
exception BadFrac
val Whole : int -> rational
val make frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

10/8/15

Signature matchingrules

structure Struct :> SIG typechecks if and onlyif:

* Every non-abstract type in SIG is provided in Struct, as specified

* Every abstract type in SIG is provided in Struct in some way
* Can be a datatype or a typesynonym

* Every vaI—bindinF in SIG is provided in Struct, possibly with a more
general and/or less abstract intemal type

* 'a list -> int moregeneral than string list -> int
* example soon

* Every exception in SIG is provided in Struct.

Of course Struct can have more bindings (implicitin above rules)

Allow to be

A key purpose of abstraction:
* No client can tell which you are using
* Can improve/replace/choose implementations later
* Easier with more abstract signatures (reveal only what you must)

UnreducedRational inadts.sml.
* Same concrete datatype.
* Different invariant: reduce fractions only in toString.

* Equivalent under RATIONAL and RATIONAL_ WHOLE,
but not under RATIONAL_OPEN.

PairRational inadts.sml.
« Different concrete datatype.
* Equivalent under RATIONAL and RATIONAL WHOLE,
but cannot ascribe RATIONAL OPEN.

PairRational (alternate concrete type)

structure =
struct
type = int * int
exception

fun (x,y) = ..

fun = (i,1) (* for RATIONAL WHOLE ¥*)

fun ((a,b)(c,d)) = (a*d + b*c, b*d)

fun = ... (* reduce at last minute ¥*)
end

20

Some interesting details

* Internally make_frac hastype int * int -> int * int,
externally int * int -> rational

« Client cannot tell if we return argument unchanged

¢ Internally Whole hastype 'a => 'a * int
externally int -> rational
* specialize 'ato int
e abstract int * int to rational
» Type-checker just figures it out

*Whole cannot have types 'a -> int * int
or 'a -> rational (must specialize all "a uses)

10/8/15

Cannot mix and match module bindings

Modules with the same signatures still define different types

These do not type-check:
* Rational. toString (UnreducedRational.make_frac(9,6))
* PairRational.toString (UnreducedRational.make frac(9,6))

Crucial for type system and module properties:
« Different modules havedifferent internal invariants!
... and different type definitions:

* UnreducedRational.rational lookslike Rational.rational,
but clients and the type-checker do not know that
* PairRational.rational is int*int not a datatype!

Will return and contrast with Object-Oriented techniques.

22

Set ADT (set.sml)

signature

sig
type
val
val
val
val
val
val
val
val
val
val
val
val
val
val

end

= Common idiom:if module provides

one externally visible type, nameit t
Then outside references are Set. t.

'a t

'a > 'a t

'a list -> 'a t

'a t -> 'a list

("'a => bool) -> "'a t
''at > '"'a -> bool

('a -> string) -> 'a t -> string

'a t -> bool

'a > 'a t -> bool
'a > 'at->"'at
'a > 'at->"'at
la L}
'a
'a

ot o o
VVyVv
[

Implementing the SET signature

ListSet structure

Represent sets as lists.

Invariants?
* Duplicates?
* Ordering?

FunSet structure
Represent sets as function closures (!!!)

24

Sets are fun!

Math:

SML:

structure
sig
type
val
fun
fun
val

end

{ x| xmod 3 =0}

fn => xmod 3 =0

:> SET =
= fn _ => false
= fn => x=y
= set x
= fn => x=y orelse set y

Are all set operations possible?

10/8/15

