Curried functions
and other tasty closure recipes

More idioms for closures

* Function composition
* Currying and partial application
* Callbacks (e.g., in reactive programming)

* Functions as data representation (later)

Function composition

fun (£,9) = £n =>f (g x)

Closure “remembers” £ and g

('b => 'c) * ('a -> 'b) -> ('a -> 'c)
REPL prints something equivalent

ML standard library provides infix operator o

fun =Math.sqrt (Real. fromInt (abs i))
fun = (Math.sgrt o Real. fromInt o abs) i
val = Math.sqgrt o Real. fromInt o abs
Right to left.

Pi peI ines (left-to-right composition)

“Pipelines” of functions are common in functional programming.
infix
fun =f x

fun =
i |> abs |> Real.fromInt |> Math.sqrt

(F#, Microsoft's ML flavor, defines this by default)

10/8/15

Currying

* Recall every ML function takes exactly one argument
* Previously encoded n arguments via one n-tuple

* Another way:

Take one argument and return a function that takes another
argument and...

* Called “currying” after logician Haskell Curry

Example
val = £fn => fn => fn =>
z >=y andalso y >= x
val = ((sorted3 7) 9) 11

* Calling (sorted3 7) returns a closure with:
* Code fn => fn => z >= y andalso y >= x
* Environment maps xto 7

* Calling that closure on 9 returns a closure with:
*Codefn z => z >= y andalso y >= x

* Environment maps xto 7, y to 9

* Calling that closure on 11 returns true

Function application is left-associative

val = fn => fn => fn =>
z >= y andalso y >= x
val = ((sorted3 7) 9) 11

el e2 e3 e4
means (((el e2) e3) ed)

val = sorted3 7 9 11

Callers can just think

“multi-argument function with spaces instead of a tuple expression”

Does not interchange with tupled version.

Function definitions are sugared (again)

val = fn => fn => fn =>
z >= y andalso y >= x
val = ((sorted3 7) 9) 11
fun £ pl p2 p3 .=e
means fun £ pl = fn p2 => fn p3 = . => e
fun =z >=

y andalso y >= x

Callees can just think

“multi-argument function with spaces instead of a tuple pattern”
Does not interchange with tupled version.

10/8/15

Final version

fun sorted3 x y z = z >= y andalso y >= x
val t1 = sorted3 7 9 11

As elegant syntactic sugar (fewer characters than tupling) for:
val sorted3 = fn x => fn y = fn z =>
z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

Function application is left-associative.

Types are right-associative:
sorted3 : int -> int -> bool
means sorted3 : int -> (int -> bool)

Curried fold

A more useful example and a call to it
Will improve call next

fun fold f acc xs =
case xs of
[1 => acc
| %::xs’ => fold £ (f(x,acc)) xs’

fun sum xs = fold (fn (x,y) => x+y) 0 xs

Partial Application ("too few arguments")

fun fold f acc xs =
case xs of
[1] => acc
| x::xs’ => fold £ (f(acc,x)) xs’

fun sum inferior xs = fold (fn (x,y) => x+y) 0 xs

val sum = fold (fn (x,y) => x+y) O

fold (fn (x,y) = x+y) O

evaluates to a closure that, when called with a list xs, evaluates the
case-expression with:

£ bound to the result of fold (fn (x,y) => x+y) and
acc bound to 0

Unnecessary function wrapping

fun £ x =g x (¥ bad *)
val £ = g (* good *)

(* bad *)
fun sum inferior xs = fold (fn (x,y) => x+y) 0 xs

(* good *)
val sum = fold (fn (x,y) => x+y) 0

(* best? *)
val sum = fold (op+) O

Treat infix operator

as normal function.

10/8/15

lterators and partial application

fun =
case xs of
[1 => false
| x:: => predicate x
orelse exists predicate xs’
val = exists (fn => x=7) [4,11,23]
val = exists (fn = x=0)

For this reason, ML library functions of this form are usually curried
¢ List.map, List.filter, List.foldl,

The Value Restriction Appears @

If you use partial application to create a polymorphic function, it may nat
work due to the

* This should surprise you; you did nothing wrong ©
but you still must change your code.

* See the code for workarounds

« Can discuss a bit more when discussing type inference

More combining functions

* What if you want to curry a tupled function or vice-versa?

* What if a function’s arguments are in the wrong order for the partial
application you want?

Naturally, it is easy to write higher-order wrapper functions
* And their types are neat logical formulas

fun = fn =>fny=>fyx
fun =fyx

fun = £ (x,y)

fun (x,v) =f xy

Efficiency

So which is faster: tupling or currying multiple-arguments?

* Both constant-time
* Don’t program against an implementation until it matters!

* For the small (zero?) part where efficiency matters:
* SML/NJ compiles tuples more efficiently

* Many other implementations do better with currying (OCaml|, F#, Haskell GHC)
* Socurrying is the “normalthing” and programmersreadtl -> t2 -> t3 -> tdxa
3-argument function that also allows partial application

10/8/15

More idioms

* Pass functions with private data to iterators: Done
* Combine functions (e.g., composition): Done

* Currying (multi-arg functions and partial application): Done

ML has (separate) mutation

* Mutable data structures are okay in some situations
* When “update to state of world” is appropriate model
* But want most language constructs truly immutable

* ML does this with a separate construct: references
* Introducing now because will use them for next closure idiom

* Do not use references on your homework
* You need practice with mutation-free programming
* They will lead to less elegant solutions

References

* New types: t ref where tisa type

* New expressions:
* ref e to create areference with initial contents e
* el := e2to update contents
* le to retrieve contents (not negation)

20

References example

val = ref 42

val = ref 42

val =x \

val =x := 43

val w = (ly) + ('z) (* 85 %) x 2 y

(* x + 1 does not type-check *)

* A variable bound to a reference (e.g., x) is still immutable:
it will always refer to the same reference

* Contents of the reference may change via :=

* There may be aliases to the reference, which matter a lot

* References are first-class values

* Like a one-field mutable object, so :=and ! don’t specify the field

10/8/15

Callbackidiom

Library takes function to apply later, when an event occurs.

Library interface:
val onKeyEvent : (int -> unit) -> unit

Other examples:
* When a key is pressed, mouse moves, data arrives
* When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
« Different callbacks may need different private data with different types
* Function’s type does not include the types ofbindings in its environment!
* (OOP: objects + private fields used similarly, e.g., Java Swingevent-listeners)
* See also JavaScript callbacks, events

22

Library implementation

Create new ref cell

Mutable state not absolutely necessary, with initial contents]
butis reasonably appropriate.
val : (int -> unit) list ref = ref []
|Get contents of ref cell. |
fun = cbs := £ :: (!cbs)

| Set contents of ref cell |

fun =
let
fun =
case fs of
[1 => ()
| H => (£ i; loop fs’)
in
loop (!cbs)

Sequencing expression ;
end Evaluate left side and throw away resultt,
then evaluate right side and use result.

Clients

Closure’s environment captures any necessary context, possibly
including mutable state for "remembering" history.

val =ref O
val _ = onKeyEvent (fn _ =>
timesPressed := (!timesPressed) + 1)
fun =
onKeyEvent (fn j =>
if i=j
then print ("pressed " ” Int.toString i)
else ())
fun =
let = ref 0 in
onKeyEvent (fn i => if i=k
then count := !count + 1
else ()
count
end

10/8/15

