Tuples, Records,
Algebraic Data Types,
Pattern Matching,
Lists

most slides dueto Dan Grossman

Feels like cons, but more restricted.

Pairs (2-tuples)

Need a way to pairs and a way to the pieces
Build:
* Syntax: (el,e2)

* Evaluation: Evaluate el tovl ande2 tov2;resultis (vl,v2)
* A pair of values is avalue

* Type-check:

Ifel hastype ta ande2 hastype tb,
then the pair expression has type ta * tb

* A new kind of type

Feels like car, cdr.

Pairs (2-tuples)

Need a way to pairs and a way to the pieces
Access
* Syntax: #1 e #2 e

* Typecheck: If e hastype ta * tb,
then #1 e hastype ta and #2 e hastype tb

* Evaluation:

* Evaluate e to a pair of values v1 and v2 in the current dynamicenvironment
* Return v1 if using #1; return v2 if using #2..

Pairs (2-tuples)

Need a way to pairs and a way to the pieces
Access via a new form of binding (better style)

* Syntax: val (x1,x2) = e

* Type-checking: If e hastype ta * tb,
then x1 has type ta and x2 has type tb

* Evaluation:

* Evaluate e to a pair of values v1 and v2 in the current dynamicenvironment
 Extend the current dynamic environment by binding x1 to v1 and x2 to v2.

Examples
Functions can take and return pairs
fun (pr : int*bool) =

let val (x,y) = pr in (y,x) end

fun (: int*int, : int*int) =
let val (x1,yl) = prl
val (x2,y2) = pr2
in x1 + y1 + x2 + y2 end

fun (x : int, : int) =
(x div y, x mod y)

Tuples

Actually, you can have tuples with more than two parts
* A new feature: a generalization of pairs

* (el,e2,..,en)
*ta * tb * .. * tn
‘#1 e, #2 e, #3 e,

eval (x1,...,xn) = e

These really are flat n-tuples, not nested pairs.

fun (:int*int) =
let val (x,y) = pr
in
if x < y then pr else (y, x)
end
5
Nesting

Pairs and tuples can be nested however you want
* Not a new feature: implied by the syntax and semantics

val x1 = (7, (true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)

val x3 = (#2 x1) (* bool*int *)

val = ((3,5),((4,8),(0,0)))

(* (int*int) *((int*int) * (int*int)) *)

Lists

Let's try to add lists to ML. Racket does this with pairs, e.g.:

(cons 1 (cons 2 (cons 3 null)))
ML has a "no value" value written (), pronounced "unit," with type unit
Solet'stry: (1, (2, (3, ())))
What is the type of this expression?
What is the type of: (1, (2, (3, (4, ())))) ?

Why is this a problem?

10/6/15

Lists

Despite nested tuples, the type of an expression still “commits” toa
particular fixed “amount” of data.

In contrast, a list:
* Can have any number of elements
« But all list elements have the same type

We need a new tool to build lists in ML.

How to build bigger types

* Already know:
* Base types like int bool unit char
* Ways to build (nested) compound types: tuples

* Today: more interesting compound types

* First: 3 most important type building blocks in any language

A tvalue contains valuesof eachof t1 t2 .. tn
A tvalue contains a tl anda t2 anda ... anda tn

A t value contains valuesof oneof t1 t2 .. tn
A tvalueis tl xora t2 xora ... Xor a tn

: A tvalue can refer to other t values
* Remarkable: much data can be described by just these building blocks

Note: versions in "quotes" are not widely used terms.

Records

Record values have fields (any name) holding values
{fl =vl, .., fn = vn}
Record types have fields (any name) holding types

{f1 : t1, .., £n : tn}
The order of fields in a record value or type never matters
* REPL alphabetizes fields just for consistency
Building records: {f1l = el, .., fn = en}

Accessing components: #myfieldname e

(Evaluation rules and type-checking as expected)

Example
{name = "Wendy", id = 41123 - 12}
Has type
{id : int, name : string}
And evaluates to
{id = 41111, name = "Wendy"}
If some expression such as a variable x has this type, then get fields

with: #id x #name x

Note we did not have to declare any record types
* The same program could also make a
{id=true,ego=false} of type {id:bool,ego:bool}

10/6/15

By position vs. by name

(structural/positional) (nominal)

(4,7,9) {£f=4,g=7,h=9}

Common syntax decision:
* parts by position (as in tuples) or by name (as with records)
* Concise vs. clear.
* Taste, practicality, etc.

Common hybrid: function/method arguments:
* Caller: positional
* Callee: nominal
* Could totally do it differently; some languages have

Tuples are sugar

(el,..,en) desugars to {1=el,..,n=en}
tl*.*tn desugarsto {1:tl1,..,n:tn}

Records with contiguous fields 1...n printed like tuples
Can write {1=4,2=7,3=91}, bad style

Datatype bindings

Sum/one-of types:
of int * int

datatype =
| of string
|

Algebraic Data Type
e Adds new type to environment
e Adds constructors to environment: .)
e Constructor: function that makes values of new type (oris a
value of new type):
- TwoInts : int * int -> mytype
- Str : string -> mytype
- Pizza : mytype

Constructing values

of int * int

datatype =
| of string
I

* Each value of type mytype came from one of the constructors
¢ Value contains:

— Tag: which constructor (e.g., TwoInts)

— Carried data (e.g., (7,9))
e Examples:

- TwoInts (3+4,5+4) evaluatesto TwoInts (7,9)

— Str if true then “hi” else ‘“bye”
evaluatesto Str “hi”

— Pizza isavalue

10/6/15

Using values

Two aspects to accessing a datatype value
1. Check what variantitis (what constructor made it)
2. Extract carried data (if that variant has any)

ML could create functions to get parts of datatype values
* Like to pair? or cdrin Racket
* Instead it does something better... totally awesomely better.

Pattern matching

Case expression and pattern-matching

fun £ x = (* £ has type mytype -> int *)
case x of
Pizza => 3
| TwoInts (il ,i2) => il+i2
| Str s => String.size s

All-in-one:
* Multi-branch conditional, picks branch based on variant.
* Extracts data and binds to branch-local variables.
* Type-check: all branches must have same type.

* Gets even better later.

Pattern matching

case e0 of

Syntax: pL = el
| p2 => e2
| pn = en

* (For now), each pattern pi is:
* a constructor name followed by the right number of variables:
*CorDxorE (x,y) or..

* Syntactically, many patterns look like expressions, but
patterns are not expressions.
* We do not evaluate them.
* We match e0 against their structure.

* Precise type-checking/evaluation rules later...

21

Why pattern-matching rocks

1. Cannot forget a case (inexhaustive pattern-match warning)

2. Cannot duplicate a case (redundant pattern type-checking error)

3. Cannot forget to test the variant correctly and get an error ((car

null) in Racket)

4. It's much more general. Supports elegant, concise code.

10/6/15

Useful examples

* Enumerations, including carrying other data

datatype suit = Club | Diamond | Heart | Spade
datatype card value = Jack | Queen | King
| Ace | Num of int

* Alternate ways of identifying real-world things/people

datatype id = StudentNum of int
| Name of string
* (string option)
* string

23

Don’tdo this!

Languages lacking convenient sum/one-of types foster bad style where
product/each-of types are misused in place of sum/one-of types:

(* use the student num and ignore other
fields unless the student num is ~1 ¥%)
{ student_num : int,

first : string,
middle : string option,
last : string }

* Unclear. No help from the language managing/remembering variants.

That said...

But if instead the point is that every “person” in your program has a
name and maybe a student number, then each-of is the way to go:

{ student num : int option,

first : string,
middle : string option,
last : string }

25

Lists!

A list is either:
* The empty list; or
* A pair of a list element and a list that holds the rest of the list.

Algebraic data types are just what we need for lists!
datatype mylist = Empty | Cons of int * mylist

datatypes can be recursive

val some ints = Cons (1, Cons (2, Cons (3, Empty)))

26

10/6/15

Accessing Lists

val = Cons (1, Cons (2, Cons (3, Empty)))
fun (: mylist) =
case xs of
| Empty => 0

| Cons (x,xs') => 1 + length xs'

fun (: mylist) =
case xs of
| Empty => 0

| Cons (x,xs') => x + sum xs'

27

Syntactic sugar forlists: build

Lists are important enough for their own syntax.

* The empty list is a value: [1

« A list of expressions/values is an expression/value; elements
separated by commas:

[el,e2,..,en] [vl,v2,..,vn]

*|Ifel evaluatestov ande2 evaluatestoalist [vl,..,vn], then
el::e2 evaluatesto [v,..,vn]

el::e2 (* pronounced “cons” *)

Syntactic sugarforlists: access

* With pattern-matching, of course.

val = [1,2,3]

note the space between intand 1ist

fun (: int list) =
case xs of
[1 =0
| x::xs' => 1 + length xs'

fun (: int list) =
case xs of
[1 =0

| x::xs8' => x + sum xs'
29

Type-checkinglist operations

For any type t, type £t 1ist describes lists with all elements of type t
*int list bool list int list list (int * int) list
(int list * int) list

* []1 canhavetype t 1list list for any type
* SML uses type "a list to indicate this (“quote a” or “alpha”)

*el::e2 type-checks withtype t list ifandonly if:
* el hastypet; and
*e2 hastypet list

More on 'a soon! (Nothing to do with 'ain Racket.)

10/6/15

Example list functions (types?)
fun (x : int) =
x=0
[]
x :: countdown (x-1)
fun (:int list, : int list) =
case xs of
1= ys
| 88 =>x :: append (xs', ys)
fun (: int list) =
let fun (: int list, : int list) =
case xs of
[1 = acc
| x:: => revtail (x :: acc, xs')
in
revtail ([], xs)
end

Example higher-order list functions (type?)
fun (f : int -> int, :int list) =
case xs of
=0

| =>f x :: map (£, xs')

* But these examples only work on lists of ints.

* They should be more general: work on any list
« and any function for map...

Polymorphic types and typeinference

The identity function: fun (x : int) = x
val id : int -> int

It should work on anything! Omit the type: fun X =X

val id : 'a -> 'a

General!
* 'ais a polymorphic type variable that stands infor any type.

« "id takes an argument of any type and returns a result of that
same type."

33

Polymorphic types and typeinference

fun = let val (x,y) = pr in (y,x) end
val swap : ('a * 'b) -> ('b * 'a)

Works on any type of pair!

val = swap (4,"hello")
('a * 'b) ismore general than (int * string).

Here, int instantiates 'a and string instantiates 'b.

10/6/15

Polymorphic datatypes

* Let's make lists that can hold elements of any one type.

datatype = Empty | Cons of 'a * 'a mylist

* A list of "alphas" is either:
* the empty list; or
* a pair of an "alpha" and a list of "alphas"

datatype =[] | :: of 'a * 'a list

* The type int list is aninstantiation of the type 'a 1list, where
the type variable 'a is instantiated with int.

35

Polymorphic list functions (types?)
fun (xs,) =
case xs of
[1 = ys
| %x::xs' => x :: append (xs', ys)

fun rev (xs) =
let fun revtail (acc : int list, xs : int list) =
case xs of
[= acc
| x::xs' => revtail (x :: acc, xs')
in revtail [] xs end

fun (£,) =
case xs of
[1 =11
| x::xs' => £ x :: map (£, xs')

Polymorphic list functions (type?)

fun (£,) =
case xs of

[1 =1
| xt:xs' => £ x :: map (£, xs')

* Type inference system (more later) chooses most general type.
 Polymorphic types show up commonly with higher-order functions.

* Polymorphic function types often give you a good idea of what the
function does.

37

Exceptions

An exception binding introduces a new kind of exception

exception MyFirstException
exception MySecondException of int * int

The raise primitive raises (a.k.a. throws) an exception

raise MyFirstException
raise (MySecondException (7,9))

A handle expression can handle (a.k.a. catch) an exception
« If doesn’t match, exception continues to propagate
el handle MyFirstException => e2
e3 handle MyFirstException => e4
| MySecondException (x,y) => e5

10/6/15

Actually...

Exceptions are a lot like datatype constructors...
* Declaring an exception adds a constructor for type exn

* Can pass values of exn anywhere (e.g., function arguments)
* Not too common to do this but can be useful

* handle can have multiple branches with patterns for type exn, just
like a case expression.

* See examples in exnopt.sml

Options
datatype 'a option = NONE | SOME of 'a

*t optionisa type for any type t
e (much like t list, but a different type, not a list)

Building:
* NONE hastype 'a option (much like [1 hastype 'a list)
* SOME e has type t option if e has type t (much likee::[])

Accessing:
* Pattern matching with case expression

Good style for functions that don't always have a meaningful result.
See examples in exnopt.sml

M

Parametric Polymorphism (again) and the
power of what you cannot do.

* Type 'a means "some type, but don't know what type"

* There is no way to "figure out" what type it actually is.
* No operation can distinguish between values of unknown type 'a.

* Example: What can a function oftype 'a list -> intdo?
fun £ (: 'a list) : int = ...

e 'a => 'a ?

fun g (x : 'a) : 'a

Special case of what should
be more general feature...

Equality Types

So if we cannot inspect values of type 'a in any way, how do we write a
general contains function?

fun contains (: 'a list, : 'a) : bool =

eqtypes (equality types):
Special category of types that support comparison.
Accompanying eqtype variables with double quotes

Mostly accurate:
=: ("'a* "'b) ->Dbool

fun contains (: ''a list, : ''a) : bool = ...

10/6/15

10

