Implementing
Control Flow and Scope

reconciling "the call stack" with "the environment"
under the hood

Slides adapted from Steve Freund, Williams College CS334

Simplified Machine Model (take CS 240)

Registers Code Data Memory

Program
Counter

Environment Pointer
(CS 240: frame pointer/base pointer)

Stack

Heap

Inline Blocks L
{ N Control link
int x = 2; b'e 2
int = 10
{ Y y 10
int z = 2;
int x = 3;
x=2z +y;
-} —| Control link
print x; 2 2
}
X 3
Environment
Pointer

/—

Function Calls

1 int squm(int n) {

2 int i, sum = 0;

3 for (i = 0; i < n; i++)
4 sum = sum + i * i;
5 return sum;

6 }

7

8 wvoid main() {

9 int x = squm(15);

10 print x;

11)

10/30/15

Activation Record stores evaluation context

(CS 240: a.k.a. call frame, stack frame, etc.)

— Control link —|<~

Return address

Return-result addr |s,

Parameters v

N,

Environment
Pointer

—="

l€--- What code (and~iTﬁ what context)
to evaluate after thisexpression/call.

>« Where to return the result of this expr/call.
N, . .
Local variables = Arguments to this function call.

< Local variables, temporary storage.
Intermediate results [¢---=-=---==

Arrangement differs per platform.

All parts stored somewhere,
may mix registers, memory..

Activation Records

t fact(2)

fact(1)

1+Control link l—] Control link

el Control link

y | 2 N Return address

Return address

tReturn-result addr

Return-result addr

n 2 i .
fact(n-1)| 1 fact(x®
fun fact(n) =
if n <= 1 then 1 Environment
else fact(n-1)*n Pointer

val y = fact(2)

[

Accessing outer bindings?

#valm=5

fun force(a) =m * a

fun cow(y) =
let m =y * y in

force (m)

end
m) val _ = cow(10) cow(10)
Dynamic Scope = force(100)

follow control links

control link

m |5

control link

force |...

control link

cow |...

control link

y 10

m 100

control link

a 100

Stack Inspection (Java/JVM)

Permission is dynamically scoped.
Depends on:
* permission of calling method

* permission of all transitive callers
(methods deeper on stack)

void open(String s) {
SecurityManager.checkRead () ;

System.main()

WebServer.serve()

Worker.respond()

FilelnputStream.
open("requests.log")

10/30/15

Stack Inspection (Java/JVM)

Permission is dynamically scoped.
Depends on:
* permission of calling method

* permission of all transitive callers
(methods deeper on stack)

/

void open(String s) { .
SecurityManager.checkRead () %Falls if Applet code]

System.main()

Browser.startApplet()

Applet.evil()

from www.sneaky-code.com

FilelnputStream.
open(" /etc/passwd")

is not trusted

Accessing outer bindings?

val m = 5
fun force(a) =m * a

fun cow(y) =
let m =y * y in

force (m)
end
val _ = cow(10) moo(10)
fun moo(y) = cow(y)
val _ = moo(y) cow(10)

Lexical Scope =???

links to follow? force(100)

Accessing outer bindings?

val m = 5
fun force(a) = m * a

fun cow(y) =
let m =y * y in

force (m)
end
10
val _ = cow(10) cow(10)
Lexical Scope =??? | force(100)

links to follow?

Control # Environment!
Separate link.

val m = 5
fun force(a) =m * a
fun cow(y) =

let m =y * y in

force (m)
end cow(10)

cow (10)

force(100)

control link

env link

m

|5

|

control link

env link

force |...

control link

env link

cow

control link

env link

Y

10

m

100

control link

env link

a

| 100

10/30/15

10/30/15

(Control link omitted to save slide space.
. . . Vertical stack alignment indicates control.)
Activation Record forLexical Scope Closures
tati
ot val cm = 2.54 env Iink2 = code for
cm q
—1 Control link — t Control link gun tOCMg) []=) cm ’E]Y totM
1 . ivati ‘un map =
it ik] to activation record of caller | map (h:x: ‘xs) =
Environment link
h x :: ma h,xs
Return address * to activation record of closest P ()
lexically enclosing scope in program _
Return result addr * a.k.a. access link, scope link val _ _(t oM, [1.0,2.0])
maj oCM, [1.0,2.
Parameters Difference P :!
Laza] iabl * Control structure depends on
ocal variables dynamic behavior of program. map(toCM,[1.0,2.0]) env ink code for
Intermediate results * Environment structure depends on p [h y map
static (lexical) form of program text. X 10
Environment = -
Pointer
_- toCM(1.0) env link
y |1

Returninga closure...

(* make a unit converter *)
 Activation records track separate: fun = fn x => x * scale
« Control link: what code called this code/should continue executing next? val make (1.0 / 2.54)

Implementation So Far

* Environment link: what environment does this activation record extend? val (toIN 6.0) + (toIN 20.0)
code for make

* Closures:

* Environment reference: to activation record where defined. — env link >d

* Code reference: to code make | —

. A . = code for fn

« On function call, new activiationrecord with: — env link

« Control link set to caller's acvtivation record. toIN | ~

* Environment link set to closure's environment.

—lenv link
make 0.3937 [scale 103037

* SO FAR: all control/environment links point "back" (deeper) in the stack
* Can still deallocate activation records in LIFO order.
* But what about returning functions...?

Returninga closure: broken

(* make a unit converter ¥*)

fun = fn x => x * scale

make (1.0 / 2.54)

(toIN 6.0) + (toIN 20.0)

val
val

code for make

=1 env link >i
make | —]

code for fn

— env link
toIN I S~

UH OH

LIFO stack of activiation records will not work!

Returninga closure: even more broken

(* make a unit converter *)

fun = fn x => x * scale
val = make (1.0 / 2.54)
val = (toIN 6.0) + (toIN 20.0)

code for make

Onesolution: the "heap-allocatedstack"

(* make a unit converter ¥*)
fun = fn x => x * scale

val make (1.0 / 2.54)
val (toIN 6.0) + (toIN 20.0)

code for make

env link >i
Give up on stack. make | —]
Heap-allocate +GC N e code for fn
activation records. COVALIT

toIN | ~
Contributes to T Tk
generational hypothesis. | toIN 6.0 [% T6.0

env link

make 0.3937 [Scale [0.3937

=1 env link >i
make | —]
n code for fn
—env_link
—lenv link
toIN 6.0 = T6.0
No no no no no no no!
LIFO stack of activiation records will not work! |
Free variables: when scope matters
(* xs is a long list *)
fun make x xs =
let val templ = map (fny => ...) xs
val temp2 = filter (fny => ...) templ
... bind temp3 - templ7 to lists ...
val (a::rest) =map (fn y => ...) templ?
in
|fnz =>x+a+zHa,X

val n £ 57

| FV(expr) =variables used where not bound within expr. |

Recursive definition:
FV(x) = {x} FV(el +e2) =FV(el) U FV(e2)
FV(fn x => e) = FV(e) - {x}

end r—] p —
val f = make 31 [...] | X, xs, map, filter |

10/30/15

Inefficiencies of Basic Heap-Allocated Stack

(* xs is a long list *)
fun make x xs =
let val templ = map (fny => ...) xs

val temp2 = filter (fny => ...) templ
val (a::rest) =map (fny => ...) templ?
in w,
fnz =>x+a + z \\
end RN

val £ = make 31 [...]

valn=£ 57 Lots of garbage reachable

from closure.

Closure creation: 0O(1)
Variable lookup: O(]env])

Alternative: save only free-variable bindings

(* xs is a long list ¥*)
fun make x xs =
let val templ = map (fny => ...) xs

val temp2 = filter (fny => ...) templ
val (a::rest) =map (fn y => ...) templ?7
in
fnz =>x+a + z
end

closure
for make

val £ = make 31 [...]
val n = £ 57
code for fn

Closure creation: O(|env])
Variable lookup: O(1) £57

Even better:
http://users-csau.dk/danvy/sfp12/papers/keep-hear n-dybvig-paper-sf p12. pdf

Summary:
Implementing Control and Scope

« Activation records track :
 Control link: what code called this code/should continue executing next?
* Environment link: what environment does this activation record extend?

* Closures:
* Environment reference: to activation record where defined (or copy of free vars)
* Code reference: to code

* On function call, new activiationrecord with:
* Control link set to caller's activation record.
* Environment link set to closure's environment.

* Cannot manage activation records with stack discipline alone, but:
* Heap-allocate the stack or at least the copied closure environments.
« Either way: Generational GC useful!

10/30/15

