Type Checking and Inference

Type-checking

* (Static) can reject a program before it runs to prevent
the possibility of some errors

* A feature of

do little (no?) such checking
* So might try to treat a number as a function at run-time

* Part of language definition, not just an implementation detail.

Implicit static typing

Static typing and explicit typing are independent.

fun = (* infer val £ : int -> int *)
if x > 3
then 42
else x * 2

fun = (* report type error *)
if x >3
then true
else x * 2

Type inference

problem: Give every binding/expression a type such
that type-checking succeeds

* Fail if and onlyif no solution exists

* Could be a pass before the type-checker
 But often implemented together

* Type inference/checking can be easy, difficult, or impossible
* Easy: Accept all programs
* Easy: Reject all programs
* Subtle, elegant, and not magic: ML

10/14/15



Human type inference...

val = 42
What is the type of x? an v, z, w) =
What is the type of f? if y
then z + x
else 0

Describe your process.

Next:

* More examples
 General algorithm is a slightly more advanced topic
* Supporting nested functions also a bit more advanced

* Enough to help you “do type inference in your head”
* And appreciate it is not magic

Key steps

« Determine types of bindings in order
* Cannot use later bindings.

* For each val or fun binding:
* Analyze definition for all necessary facts (constraints)

* Example: If seex > 0, then x must have type int
* Type error if no way for all facts to hold (over-constrained)

« Afterward, use type variables (e.g., ' a) for any unconstrained types

« (Finally, enforce the value restriction, discussed later)

val = 42

fun (v, z, w)

ify
then z + x
val x : int = 42 else 0

if then else

fun =
let val (y,z) = x in
(abs y) + z
abs : int -> int end
fun £ - \
let in end
1 +
val = J \
/ \ apply z
x

() RN

abs ¥

10/14/15



Type Inferenceand Polymorphism

* ML type inference can infer types with type variables

* Inference and polymorphism are orthogonal
* Languages can have type inference without type variables
* Languages can have type variables without type inference
* But both together is a "sweet spot"

Key Idea

« Collect all the facts needed for type-checking

* These facts constrain the type of the function

* Two examples without type variables
* And one example that does not type-check
* Then examples for polymorphicfunctions

« See slides and notes on website for 2 optional more advanced topics:
* Value restriction: mutation caused an ocasionally annoying type issue.
* ML type inference is in a sweet spot.

Two more (optional) topics

* ML type-inference story so far is too lenient
* Value restriction limits where polymorphictypes can occur
* See why (mutation!) and then what

* MLisina “sweet spot”
* Type inference more difficult without polymorphism
* Type inference more difficult with subtyping

Important to “finish the story” but these topics are:
* A bit more advanced
* A bit less elegant

The Problem

As presented so far, the ML type system is unsound!
« Allows putting a value of type t1 (e.g., int) where we expect a value of type
t2#tl (e.g., string)

A combination of polymorphism and mutation is to blame:

val = ref NONE (* val r : 'a option ref %)
val =r := SOME "hi"
val =1+ case 'r of NONE => 0 | SOME x = Xx

* Assignment type-checks because (infix) := has type
'a ref * 'a -> unit, soinstantiate with string

 Dereference type-checks because ! has type
'a ref -> 'a,soinstantiate with int

10/14/15



What to do

Must reject at least one of these three lines
val = ref NONE (* val r : 'a option ref %)
val =r := SOME "hi"
val =1+ case 'r of NONE => 0 | SOME x = X

Cannot make special rules for reference types because type-checker
cannot know the definition of all type synonyms
* Module system comingup

type = 'a ref
val =ref (* val £ : 'a -> 'a foo *)
val = f NONE

The Value Restriction

val = ref NONE (* val r : ?.Xl option ref ¥)
val _ =r := SOME "hi"
val = let val SOME =1!r in 1 + end

* A variable-binding can have a polymorphic type only if the
expression is a variable or value

* Function calls lile ref NONE are neither

* Else get a warning and unconstrained types are filled in with dummy
types (basically unusable)

* Not obvious this suffices to make type system sound, but it does

Value Restriction downside

Causes problems when unnecessary because (not using mutation):
val = List.map (fn = (x,1))
(* does not get type 'a list -> ('a*int) list ¥*)

The type-checker does not know List.map is not making a mutable
reference.

Workarounds for partial application:

fun = List.map (fn = (x,1)) xs
(* 'a list -> ('a*int) list *)

 give up on polymorphism; write explicit non-polymorphic type

val : int list -> (int * int) list =
List.map (fn = (x,1))
val = List.map (fn (x : int) => (x,1))

A local optimum

* Despite the value restriction, ML type inference is elegant and fairly
easy to understand

* More difficult without polymorphism
* What type should length-of-list have?

* More difficult with subtyping
* Suppose pairs are supertypes of wider tuples

* Then val (y,z) = xconstrains x to have at least two fields, not exacty
two fields

* Depending on details, languages can support this, but types often more
difficult to infer and understand

* Will study subtyping later, but not with type inference

10/14/15



