The ML Language

(We will use Standard ML.)

Warning to concurrent CS235 students:

Ocaml and SML are very similar semantically and syntactically, but thee
are just enough differences to make things annoying. Watch out!

ML: Meta-Language for Theorem-Proving

* Dana Scott, 1969

* Logic of Computable Functions (LCF): for stating theorems about programs

* Robin Milner, 1972
* Logic for Computable Functions (LCF): automated theorem proving for LCF

* Theorem proving is a hard search problem.
* Needs its own language...
* ML: Meta-Language for writing programs (tactics) to find proofs of theorems
(about other programs

* Proof Tactic: Partial function from formula to proof.
* Guides proof search
* Behavior is one of:
« find and retumn proof
* never terminate
* report an error

<

real procedure average (A,n) ;

real array A; integer n;

begin

real sum;

sum := 0; N

for i =1 step 1 until n dd
sum := sum + A[i];

average := sum/n

Racket

Modula

L

Language Supportfor Tactics

* Static type system
* guarantee correctness of generated proof

* Exception handling
« deal with tactics that fail (Turing Award)
* make failure explicit, force programmer to deal with it

* First-class/higher-order functions
* compose tactics

* fun compose(tacticl, tactic2) =
fn formula => tactic2 (tacticl (formula))

9/29/15

The ML language:

statically-typed, expression-oriented

Several important ideas beyond what we studied in Racket
Static typing
Type inference
Algebraic data types
Pattern matching
Exceptions
Modules

We will also consider...
Limited mutation
Lazy evaluation
Implementation issues for

exceptions
closures and lexical scope

... And other things along the way...

Slides mix material from Ben, Steve Freund, Dan Grossman

Wipe your syntax slate clean.

Much (but not all!) of ML's semantics
will seem familiar from Racket.

An ML program is asequence of bindings.
(* My first ML program *)
val x = 34;
val yv = 17;
val z = (x +y) + (y + 2);
val g = z + 1;
val abs of z = if z < 0 then 0 - z else z;
val abs of z_simpler = abs z

(* comment: ML has (* nested camments! *) *)

Variable binding

*

val z = (x +y) + (y + 2); (* comment *)

More generally: val x = e; Semicolon optional;
may improve debugging.

3 Questions:

Syntax:
* Keyword wval and punctuation =
* Variable x
* Expression e
Type-checking:
* Type-check e : tin the current static environment, for some type t.
« Extend the current static environment with the typing x : t

Evaluation (only for things that type-check):
* Evaluate e to a value v using the current dynamic environment.

« Extend the current dynamic environment with the binding x 2 e.

*

9/29/15

Bindings, types, and environments
* A program is a sequence of bindings.

* Bindings build two environments:
« static environment maps variable to type before evaluation
* dynamic environment maps variable to value during evaluation

 Type-check each binding in order:
* using static environmentproduced by previous bindings
« and extending it with a binding from variable to type

* Evaluate each binding in order:
* using dynamic environment produced by previous bindings

* and extending it with a binding from variable to value

Expressions and types

*e : t means "expression e has type t"

* Variables:
« Syntax: sequence of letters, digits, _, not starting with digit
* Type-check: Lookup in current static environment, fail if not found.
« Evaluation: Look up value in current dynamic environment

* Addition
* Syntax: el + e2 where el and e2areexpressions
* Type-check:
*Ifel : int and e2 : int,
then e1 + e2 : int
* Evaluation:

* If el evaluates to vl and e2 evaluates to v2,
then el + e2evaluates to sum of vl and v2

Type-checking expressions

34 : int ~1 : int (* negative one *)
3.14159 : real true : bool false : bool
x : t

« if t=lookup x'stypein airrent static environment

el + e2 : int
«ifel : intand e2 : intin current staticenvironment

el < e2 : bool
*ifel : intand e2 : intin current staticenvironment

if el then e2 else e3 : t
*ifel : bool ande2 : t and e3 : tin current staticenvionment
¢ (e2 and e3 must have the same type)

el = e2 : bool el <> e2 : bool (* not equal *)
«ifel : £t and e2 : t in current static environment
¢ (e2 and e3 must have the same type, onemore restriction later)

Function binding examples

fun (x : int, :int) =
y=0
1
x * pow (er‘l)

fun (x : int) =
pow (x,3)

val = cube 4

val =

pow (2,2+2) + pow (4,2) + cube (2) + 2

9/29/15

Watch out

Odd error messages for function-argument syntax errors

* in type syntax is not arithmetic
* Example: int * int -> int
* In expressions, * is multiplication: x * pow(x,y-1)

Cannot refer to later function bindings
* Helper functions must come before their uses
* Special construct for mutual recursion (later)

Function bindings

e Syntax: fun (ct1, .., :tn) = e
*x0 ... xnarevariable names
*tl ... tnaretypes
* eis an expression
* (Will generalize later)

* Type-check:

* Adds bindingx0 : (tl * .. * tn) -> tto current static environment if:

* Can type-check body eto havetype tin thecument static environment,

extended with:
*+x1 : tl, .., Xxn : tn (arguments with their types)
«x0 : (t1 * . * tn) -> t (forrecursion)
* Evaluation:

* Produce a function closure ¢ @apturing the function code and the aurrent
dynamic environment extended with x0 2 ¢
* Extend the current dynamic environment with x0 = ¢

Function types

fun (ct1, .., :tn) = e

e Function types: (t1 * .. * tn) -> t
* Result type on right
* Overall type-checking result: give x0this type in rest of program

* Calling x0 returns result of evaluating e, thusreturn type of
x0 istypeofe.

* Type-checker infers t if such a t exists. Later:
* Requires some cleverness due to recursion
* Can omit argument types too

Function call

A new kind of expression: 3 questions

Syntax: €0 (el,..,en)

*e0 ... enare expressions
 (Will generalize later Parentheses optional if exactly one argument.)

Type-check:
e If:
*e0 hassometype (t1 * .. * tn) -> t
*el hastypetl, .. en hastypetn
* Then:
*el(el,..,en) hastypet
Example: pow (x,y-1) in previous example has type int

9/29/15

Function-call evaluation

Evaluation: el (el, .., en)

1. Under current dynamic environment, evaluate e0 to a function
closure

* Since call type-checked, result will be a function taking parameters
x1,..,xn of types matching thoseof el,...,en

2. Under current dynamic environment, evaluate arguments to
valuesvl, .., vn

3. Result is evaluation of e in an environment extended to map x1
tovl, ., xntovn

Let expressions

. Syntax: let bl b2 .. bn in e end
e Each bi is any binding and e is any expression

* Type-check:

* Type-check each bi and e in a static environment thatincludes the
previous bindings.

* Type of whole let-expression is the type of e.
Like Racket's let*

* Evaluation:
* Evaluate each bi and e in a dynamic environment that includes the
previous bindings.
* Result of whole let-expression is result of evaluating e.

Anonymous functions

3 questions:

fn (x1 : t1, ..., xn : tn) => e
* Syntax:

* Type-check:
* Type-check e in the current static environment, extended with x1 : ¢1,
..., Xn : tn
* If e has type t, the function hastype (t1 * .. * tn) -> t

* Evaluation: A function (closure) is a value.
Recall the function's body is not evaluated until a function call.

« Difference with £un: no recursion.

9/29/15

