Two world views

FP:
OOP:

Which is better? Depends on software evolution, taste.

Can awkwardly emulate each other

Adapted from material by Dan Grossman.

Common pattern: expressions

Operations over type of data

% eval toString |usesX
-]

s

O |VarxX
Q

z

p Sine
L

)

n Times
2

f=

0

S

s

FP: behaviorby operation

Function per operation
with branch per variant

eval |toString |usesX

VarX

Sine

Times

Datatype with

constructor per variant

Pattern-matching selects variant.
Wildcard can merge rows ina function.

OOP:behaviorby variant

Base class with
(abstract) method per operation

eval |toString |usesX

VarX

Sine

Times

Subclass per variant

overrides each operation method
to implement variant's behavior

Dynamic dispatch selects variant.
Concrete method in base class
can merge rows where not overridden.

11/24/15

FP: Extensibility

eval | toString | usesX depth
VarX
Sine
Times
Sgrt
add constructor, add function,
change all functions over datatype no other changes

ML type-checker gives "to-do list"
via inexhaustive pattern-match warnings

OOP: Extensibility

eval | toString |usesX depth
VarX
Sine
Times
Sqgrt
add subclass, add method
no other changes to base class and all subclasses

Java/Scala type-checker gives "to-do list"
via errors about non-overridden
abstract method

Thoughts on Extensibility

Making software extensible is valuable and hard.
* If new operations likely, use FP
* If new variants likely, use OOP
* If both, use somewhat odd "design patterns"
* Reality: The future is hard to predict!

Extensibility is a double-edged sword.
* Code more reusable without being changed later

* Original code more difficult to reason about locally or change later
without breaking remote extensions

* Language mechanisms also support restricting extensibility:
* ML abstract types
* Java’s £inal prevents subclassing/overriding

Binary Operations

What about operations that take two arguments of possibly different
variants?

¢ Include value variants Int, Rational,
* (Re)define Add to work on any pair of Int, Rational, ...

The addition operation alone is now a different 2D grid:

Int Rational

Int
Rational

11/24/15

ML approach: pattern-matching

Natural: pattern-match both simultaneously

fun (vi,v2) =
case (vl1l,v2) of
(Int i, Int j) => Int (i+3J)

| (Int i, Rational(j,k)) => Ratiomal (i*k+3j, k)
R
| ...

fun =
case of

| Add(el,e2) => add values (eval el, eval e2)

OOP approach:dynamic dispatch

abstract class Value extends Expr {
def addValues (v: Value): Value

} Dynamic dispatch chooses

class Add extends Expr { addValues basedon
result ofel.eval ()

éx}érride def eval(): Value = {
el.eval ().addValues (e2.eval())

}
}

class MyInt extends Value {

// add this to v
override def addValues (v: Value): Value =

y - //<What goes here? Depends on what
kind of value v is. 0

Double Dispatch

OOP style: Always make variant choices using dynamic dispatch.

abstract class Value extends Expr {

def addValues (v: Value): Value

def addInt(v: MyInt): Value

def addRational (v: MyRational): Value
}

class MyInt extends Value {
def addvalues (v: Value): Value = v.addInt(this)

Dynamic dispatch Now, dispatch on second value,
on first value "telling it" what kind of value thisis.

got us here.

def addInt(v: MyInt): Value = ...
def addRational (v: MyRational): Value =
}

[Repeat for all Value subclasses...] n

Reflecting

* Double dispatch manually emulates basic pattern-matching.
* Does it change the way in which OOP handles evolution?

* If we add an operation over pairs of Values:
* OOP double dispatch: how many classes are added? How manychange?
* FP pattern matching: how many functions are added? How many change?

* If we add a kind of Value:
* OOP double dispatch: how many classes are added? How manychange?
* FP pattern matching: how many functions are added? How many change?

* What if we could dispatch based on all arguments at once?

11/24/15

Multimethods

General idea:
* Allow multiple methods with same name and # arguments
* Indicate which ones take instances of which classes

* NOT same as static overloading.

If dynamic dispatch is essence of OOP, this is cleaner, more OOP

Downside:
subclassing sometimes cuses “no clear winner” for which method to call

Research idea picked up in some recent languages (e.g., Clojure, Julia)

The other way is possible with planning.

* Functions allow new operations and objects allow new variants
without modifying existing code even if they didn’t plan for it.

* Functions can support new variants “if they plan ahead”
* Use type constructors to make datatypes extensible
* Operations use fundion argument to give result for extension

* Objects can support new operations “if they plan ahead”

« Visitor Pattern uses double dispatch to allow new operations “on the side”
* See assignment.

* Neither "plan ahead" option is elegant, but they work.

Closuresvs. Objects

Closure:
 Captures code of function, byfunction definition.
» Captures all bindings the code may use, by lexical scope of definition.

Object:
« Captures code for all methods that could be called on it, byclass hierarchy.

* Captures bindings that may be used by that code, by instance variables
declared in class hierarchy.

Emulation in both directions is fascinating.

11/24/15

