Two world views

FP:
OOP:

Which is better? Depends on software evolution, taste.

Can awkwardly emulate each other

Adapted from material by Dan Grossman.

Common pattern: expressions

Operations over type of data
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FP: behaviorby operation

Function per operation
with branch per variant

eval |toString |usesX

VarX

Sine

Times

Datatype with

constructor per variant

Pattern-matching selects variant.
Wildcard can merge rows ina function.

OOP:behaviorby variant

Base class with
(abstract) method per operation

eval |toString |usesX
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Subclass per variant

overrides each operation method
to implement variant's behavior

Dynamic dispatch selects variant.
Concrete method in base class
can merge rows where not overridden.
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FP: Extensibility

eval | toString | usesX depth
VarX
Sine
Times
Sgrt
add constructor, add function,
change all functions over datatype no other changes

ML type-checker gives "to-do list"
via inexhaustive pattern-match warnings

OOP: Extensibility

eval | toString |usesX depth
VarX
Sine
Times
Sqgrt
add subclass, add method
no other changes to base class and all subclasses

Java/Scala type-checker gives "to-do list"
via errors about non-overridden
abstract method

Thoughts on Extensibility

Making software extensible is valuable and hard.
* If new operations likely, use FP
* If new variants likely, use OOP
* If both, use somewhat odd "design patterns"
* Reality: The future is hard to predict!

Extensibility is a double-edged sword.
* Code more reusable without being changed later

* Original code more difficult to reason about locally or change later
without breaking remote extensions

* Language mechanisms also support restricting extensibility:
* ML abstract types
* Java’s £inal prevents subclassing/overriding

Binary Operations

What about operations that take two arguments of possibly different
variants?

¢ Include value variants Int, Rational,
* (Re)define Add to work on any pair of Int, Rational, ...

The addition operation alone is now a different 2D grid:

Int Rational

Int
Rational
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ML approach: pattern-matching

Natural: pattern-match both simultaneously

fun (vi,v2) =
case (vl1l,v2) of
(Int i, Int j) => Int (i+3J)

| (Int i, Rational(j,k)) => Ratiomal (i*k+3j, k)
R
| ...

fun =
case of

| Add(el,e2) => add values (eval el, eval e2)

OOP approach:dynamic dispatch

abstract class Value extends Expr {
def addValues (v: Value): Value

} Dynamic dispatch chooses

class Add extends Expr { addValues basedon
result ofel.eval ()

éx}érride def eval(): Value = {
el.eval ().addValues (e2.eval())

}
}

class MyInt extends Value {

// add this to v
override def addValues (v: Value): Value =

y - //<What goes here? Depends on what
kind of value v is. 0

Double Dispatch

OOP style: Always make variant choices using dynamic dispatch.

abstract class Value extends Expr {

def addValues (v: Value): Value

def addInt(v: MyInt): Value

def addRational (v: MyRational): Value
}

class MyInt extends Value {
def addvalues (v: Value): Value = v.addInt(this)

Dynamic dispatch Now, dispatch on second value,
on first value "telling it" what kind of value thisis.

got us here.

def addInt(v: MyInt): Value = ...
def addRational (v: MyRational): Value =
}

[Repeat for all Value subclasses... ] n

Reflecting

* Double dispatch manually emulates basic pattern-matching.
* Does it change the way in which OOP handles evolution?

* If we add an operation over pairs of Values:
* OOP double dispatch: how many classes are added? How manychange?
* FP pattern matching: how many functions are added? How many change?

* If we add a kind of Value:
* OOP double dispatch: how many classes are added? How manychange?
* FP pattern matching: how many functions are added? How many change?

* What if we could dispatch based on all arguments at once?
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Multimethods

General idea:
* Allow multiple methods with same name and # arguments
* Indicate which ones take instances of which classes

* NOT same as static overloading.

If dynamic dispatch is essence of OOP, this is cleaner, more OOP

Downside:
subclassing sometimes cuses “no clear winner” for which method to call

Research idea picked up in some recent languages (e.g., Clojure, Julia)

The other way is possible with planning.

* Functions allow new operations and objects allow new variants
without modifying existing code even if they didn’t plan for it.

* Functions can support new variants “if they plan ahead”
* Use type constructors to make datatypes extensible
* Operations use fundion argument to give result for extension

* Objects can support new operations “if they plan ahead”

« Visitor Pattern uses double dispatch to allow new operations “on the side”
* See assignment.

* Neither "plan ahead" option is elegant, but they work.

Closuresvs. Objects

Closure:
 Captures code of function, byfunction definition.
» Captures all bindings the code may use, by lexical scope of definition.

Object:
« Captures code for all methods that could be called on it, byclass hierarchy.

* Captures bindings that may be used by that code, by instance variables
declared in class hierarchy.

Emulation in both directions is fascinating.
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