Dynamic Dispatch and Inheritance

Variable lookup

Key piece of semantics in any language.

* ML, Racket:
— Justone kind of variables.
— Lexical scope — unambiguous binding
— Field names (in records) are not variables: no "lookup"

+ Smalltalk, Java, Scala...:
— Local variables same
* More limited scope if no first-class/higher-order functions
— Instance variables, methods
» Look up interms of special self / this "variable

Method lookup: dynamic dispatch

Two key questions:

— General case:
What m is run by .m() ?

— Specific case:
Whatmisrunby this.m() ?

Quick look at classes in Scala

(take notes)

class Point(val x: Double, val y: Double) {
def getX() : Double = x
def get¥Y() : Double = y
def distFramOrigin : Double = {
Math.sqrt(getX () *getX() + get¥() *getY ())
}
}

class PolarPointA(val r: Double,
val theta: Double)
extends Point(0.0,0.0) {
override def getX () : Double r * Math.cos(theta)
override def getY () : Double r * Math.sin(theta)
override def distFromOrigin : Double = r

}

11A7/15

Method lookup

class Point(val x: Double, val y: Double) {
def getX() : Double = x
def get¥() : Double = y
def distFramOrigin() : Double = {
Math.sqrt(this.getX()*this.getX()
+ this.get¥() *this.getY¥())
}
}

class PolarPointB(val r: Double,
val theta: Double)
extends Point(0.0,0.0) {
override def getX () : Double = {
this.r * Math.cos(this.theta)
}
override def getY () : Double = {
this.r * Math.sin(this.theta)
}
}

DynamIC dISpatCh (a.k.a. late binding or virtual methods)

The unique OO semantics feature.
Key questions:

* Which distToOrigin is called?
* Which xand y getters are called by that distToOrigin?

this refers to the current object, not the containing class.
+ this.foo() uses late binding (dynamic dispatch) to find foo

* NOT lexical scope

Dynamic Dispatch is not just...

obj0.m(objl, ... ,objn)
m(obj0,objl, ... ,objn)

Is this justan implicit parameter that captures a first argument
written in a different spot?

NO! "What m means" is determined by class of ob3j0!
Must inspect obj0 before starting to execute m.

this is different than any other parameters.

Key artifacts of dynamic dispatch

Why overriding works...
distFromOriginin PolarPointA

Subclass's definition of m "shadows" superclass's definition of m
when dispatching on object of subclass (or descendant)
even if dispatching from method in superclass.

More complicated than the rules for closures

— Haveto treat this specially

— May seem simpler only if you learned it first
— Complicated != inferior or superior

114715

Closed vs. open

ML: closures are closed

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

May shadow even, but calls to odd above still “do what we expect”’

(* does not change odd: too bad, would help *)
fun even x = (x mod 2)=0

(* does not change odd: good, would break ¥*)
fun even x = false

Closed vs. open

Most OOP languages: subclasses can change the behavior of
superclass methods they do not override.

class A {
def even(x: Int): Boolean = {
if (x == 0) true else odd(x-1)

}
def odd(x: Int): Boolean = {
if (x == 0) false else even(x-1)
}
}
class B extends A { # improves odd in B objects
override def even(x: Int): Boolean = x $ 2 = 0
}
class C extends A { # breaks odd in C acbjects
override def even(x: Int): Boolean = false

}

OORP trade-off: implicit extensibility

Any method that calls overridable methods (even on this) can have
behavior changed by subclass even if it is not overridden.

— Onpurpose, by mistake?
— Behavior depends on calls to overridable methods

* Harder to reason about “the code you're looking at”
— Avoid by disallowing overriding: “private” or “final” methods

« Easier for subclasses to extend existing behavior without
copying code
— Assuming superclass method is not modified later

FP trade-off: explicit extensibility

Afunction that calls other functions may have its behavior modified
only ifit calls functions passed as arguments.

» Easier to reason about “the code you're looking at”
— Calls to argument functions (i.e., sources of unknown
behavior) are explicit.

» Harder for other code to extend existing behavior without
copying code
— Only by functions as arguments to higher-order functions.

114715

Overloading is static.

More rules:
— overloading: > 1 methods in class can have same name
— overriding: if and only if same number/types of arguments

Pick the “best one” using the static types of the arguments
— Complicated rules for “best”
— Type-checking error if there is no “best”
— Some confusion when expecting wrong over-thing

super:

Requires
static types.

Static di Spatch (a.k.a early binding)

» Callstoe.m2 () where e has declared Class C fthi
— (the lexically enclosing class is this's "declared dasm

... though
not for

— always resolve to "closest" method m2 defined inc or C's

ancestor classes
— completely ignores run-time class of object result of e

* ... similar tolexical scope for method lookup with inheritance.

» Agiven method call always resolves to same method definition.

Determined before running program.

+ used for super

11A7/15

