Bindings, environments, and scope

For style, convenience, and efficiency

Let expressions

+ The big thing we need: local bindings
— For style and convenience
— Abig but natural idea: nested function bindings
— For efficiency (not “just alittle faster”)

Let expressions

2 questions:

* Syntax: (let ([x1 el] ... [xn en]) e)
— Each xi is any variable, and e and each ei are any
expressions

» Evaluation:
— Evaluate each ei to vi inthe current dynamic
environment.
— Evaluate e inthe current dynamic environment extended
with each xi bound to the corresponding vi.

Result of whole let-expression is result of evaluating e.

It is an expression

A let-expression is just an expression,
SO we can use it anywhere an expression can go.

Silly example:

(+ (let ([x 1]) x) (let ([y 2]
[z 4])
(-zy))

9/9/15



9/9/15

Shadowing and Scope Even function bindings...
; Environment *after* this line
; env: . » Silly example:
(let ([x 2]) ; env: x --> 2, . (define (quad x)
(+ x (let ([square (lambda (x) (* x x))])
(let ([x (* x x)]) ;, env: x --> 4, x --> 2, (square (square x))))
(+ x 3))) ; env:
» Private helper functions bound locally = good style.
* But no define-stylerecursion... for that we need letrec
(define (count-up-from-1 x)
(letrec ([count (lambda (from to)
What's new is scope: where a binding is in the environment (if (= from to)
Only in body of the let-expression (cons to null)

(cons from (count (+ from 1) to))))1])
(count 1 x)))

Error: last use of x outside scope of binding:
(+ (let ([x 4]) x) x) 5 .

Better: Nested functions: style

(define (count-up-from-l-better x)
(letrec ([count (lambda (from)
(if (= from x)
(cons x null) .
(cons from (count (+ from 1)))))1) — Unlikely to be useful elsewhere
(count 1))) — Likely to be misused if available elsewhere

— Likely to be changed or removed later

* Good style to define helper functions inside the functions they
help if they are:

» Functions can use bindings in the environment where they are » Afundamental trade-off in code design: reusing code saves
defined: effort and avoids bugs, but makes the reused code harder to
— Bindings from “outer” environments change later

» Such as parameters to the outer function
— Earlier bindings in the let-expression

* Unnecessary parameters are usually bad style
— Like to in previous example




Avoid repeated recursion

Consider this code and the recursive calls it makes
— Don't worry about calls to car, edr, andnull? because
they do a small constant amount of work

(define (bad-max xs)
(if (null? xs)
null ; max is not defined on empty list
(if (null? (cdr xs))

(car xs)
(if (> (car xs) (bad-max (cdr xs)))
(car xs)

(bad-max (cdr xs))))))

(if (> (car xs) (bad-max (cdr xs)))

Fast vs. unusable

bm 50,.. —»bm 49,. —> bm 48,..

(car xs)
(bad-max (cdr xs)))

—» — —/ bm 1

Some calculations

Suppose one bad-max call’s if logic and calls to car,
null?, cdr take 107 seconds
— Then (bad-max (list 50 49 .. 1)) takes 50 x 10-7 sec

— And (bad-max (list 1 2 .. 50)) takes 1.12 x 108 sec

* (over 3.5 years)
* (bad-max (list 1 2 .. 55)) takes over 1 century

» Buying a faster computer won't help much ©

The key is not to do repeated work that might do repeated work
that might do...
— Saving recursive results in local bindings is essential...

bm 1, —> bm 2, —\Pbm3, qqumso
e XX
2 i: bm 3, < < ?' times
e X
bm 50
10
Should we rewrite )
Efficient max any earlier functions? )

(define (good-max xs)
(if (null? xs)

(let ([rest-max (good-max (cdr xs))])
(if (> (car xs) rest-max)

— — — gn 1

— —» —> gm 50

null
(if (null? (cdr xs))
(car xs)
(car xs)
rest-max)))))
gm 50,.. —» gm 49,. —» gm 48,..
gm 1,.. —» gm 2,.. —»gm 3,..

Let as sugar, jump to list-append

12

9/9/15



