Macros
User-Extensible Syntax

slides adapted from Dan Grossman

A macro is user-defined syntactic sugar.

* A macro definition describes how to transform some new syntax into
different syntaxin the source language

* A macro systemis a language (or part of a larger language) for
defining macros

* Macro expansion is the process of rewriting the syntax for each
macro use

« Before a program is run (or even compiled)

Example Racket Macros

Definitions:
* Expand (my-if el then e2 else e3)
to (if el e2 e3)
* Expand (comment-out el e2)
to e2
It is like we added keywords to our language
* Other keywords only keywords in uses of that macro
* Syntax error if keywords misused
* Rewriting (“expansion”) happens before execution
Uses:

(my-if x then y else 2z) ; (if x y z)
(my-if x then y then z) ; syntax error

(comment-out (car null) #f)

Overuse

Macros sometimes get a bad wrap for being overused.

Rule of thumb:
Use macros only where functions would be awkward or impossible.

They can be useful!

9/29/15

Tokenization

First question for a macro system: How does it tokenize?

* Macro systems generally work at the level of tokens not
sequences of characters
* So must know how programming language tokenizes text

* Example: “macro expand head to car”
* Would not rewrite (+ headt foo) to (+ cart foo)

* Would not rewrite head-door to car-door
* But would in C where head-door issubtraction

Parenthesization
Second question for a macro system: How does associativity work?

C/C++ preprocessor basic example:
#define (x,v7) x+y

Probably not what you wanted:
ADD (1,2/3)*4 MM 3 4.0/3%x4 ™' (142/3) x4

"Solution": emphatic parenthesization

#define (x,v) ((x)+(y))

Racket won’t have this problem:
* Macro use: (macro-name ...)
* After expansion: (something else in same parens)

Local bindings

Third question for a macro system: Can variables shadow macros?

Suppose macros also apply to variable bindings. Then:

(let (I 01l 1]) head) ; 0
(let* (I 01I 1]) head) ; 0

Would become:

(let ([01[1]) car) ; error
(letx ([01[1]) car) ; 1

C/C++ convention: all-caps macros and non-all-caps everything else

Racket does not work this way — it gets scope “right”!

Example Racket macro definitions

Two simple macros

(define-syntax ; macro name
(syntax-rules () ; other keywords
[(my-if then else) ; macro use
(if el e2 e3)])) ; form of expansion
(define-syntax ; macro name
(syntax-rules () ; other keywords
[(comment-out) ; macro use
instead])) ; form of expansion

If the form of the use matches, do the corresponding expansion
— In these examples, list of possible use forms has length 1

— Else syntax error

9/29/15

A bad macro

Any function that doubles its argument is fine for clients

(define () (+ x x))
(define () (* 2 x))

* These are equivalent to each other

So macros for doubling are bad style but instructive examples:

(define-syntax (syntax-rules () [(dbl x) (+ x x)]))
(define-syntax (syntax-rules () [(dbl x) (* 2 x)]))

* These are not equivalent to each other Consider:

(dbl (begin (print "hi") 42))

More examples

Sometimes a macro should re-evaluate an argument it is passed
* If not, as in dbl, then use a local binding as needed:

(define-syntax
(syntax-rules ()
[(dbl x)
(let (Iy x1) (+y ¥)D))

Also good style for macros not to have surprising evaluation order
* Good rule of thumb to preserve left-to-right
* Bad example (fix with a local binding):

(define-syntax
(syntax-rules ()
[(take from)
(- e2 el)]))

Local variables in macros

In C/C++, defining local variables inside macros is unwise
* When needed done with hacks like __strange_name34

Silly example:

* Macro: (define-syntax
(syntax-rules ()
[(dbl x) (let ([y 1])
(*2x y))]))
. Use: (let ([y 7]) (dbl y))
* Naive expansion: (let ([y 71) (let ([y 11)

(*2ywy))
* But instead Racket “gets it right,” which is part of hygiene

The other side of hygiene

This also looks like it would do the “wrong” thing

(define-syntax

* Macro:
(syntax-rules ()
[(dbl x) (* 2 x)]))
* Use: (let ([* +]) (dbl 42))

* Naive expansion: (let ([* +]) (* 2 42))

* But again Racket’s hygienic macrosget this right!

9/29/15

Maintaining macro hygiene

A hygienic macro system:
1. Secretly renames local variables in macros with fresh names

2. Looks up variables used in macros where the macro is defined

Neither of these rules are followed by the “naive expansion” most
macro systems use

* Without hygiene, macros are much more brittle (non-modular)

On rare occasions, hygiene is not what you want
* Racket has somewhat complicated support for that

Sound familiar? Analogous to vs.

More examples in code: for loop, less parensy lets, let* as sugar.

9/29/15

