
Higher-Order List Functions
in Racket

CS251 Programming
Languages
Fall 2017, Lyn Turbak

Department of Computer Science
Wellesley College

Higher-order	List	Func2ons	

6-2

A function is higher-order if it takes another
function as an input and/or returns another
function as a result. E.g. app-3-5,
make-linear-function, flip2.

We will now study higher-order list functions
that capture the recursive list processing
patterns we have seen.

Recall	the	List	Mapping	Pa9ern	
(mapF (list v1 v2 … vn))

6-3

v1 v2 vn

F F F
(F	v1)		

�

�
(F	v2)		 (F	vn)		

(define (mapF xs)
 (if (null? xs)
 null
 (cons (F (first xs))
 (mapF (rest xs)))))

Express	Mapping	via	Higher-order	my-map

6-4

(define (my-map f xs)
 (if (null? xs)
 null
 (cons (f (first xs))
 (my-map f (rest xs)))))

my-map	Examples	

6-5

> (my-map (λ (x) (* 2 x)) (list 7 2 4))

> (my-map first (list (list 2 3) (list 4) (list 5 6 7)))

> (my-map (make-linear-function 4 7) (list 0 1 2 3))

> (my-map app-3-5 (list sub2 + avg pow (flip pow)
 make-linear-function))

Your	turn	

6-6

(map-scale n nums)	returns	a	list	that	results	from	scaling		
each	number	in	nums	by	n.		

> (map-scale 3 (list 7 2 4))
’(21 6 12)

> (map-scale 6 (range 0 5))
’(0 6 12 18 24)

Currying	

6-7

A	curried	binary	func2on	takes	one	argument	at	a	2me.		

(define (curry2 binop)
 (λ (x) (λ (y) (binop x y)))

(define curried-mul (curry2 *))

> ((curried-mul 5) 4)

> (my-map (curried-mul 3) (list 1 2 3))

> (my-map ((curry2 pow) 4) (list 1 2 3))

> (my-map ((curry2 (flip2 pow)) 4) (list 1 2 3))

> (define lol (list (list 2 3) (list 4) (list 5 6 7)))

> (map ((curry2 cons) 8) lol)

> (map (??? 8) lol)
 ‘((2 3 8) (4 8) (5 6 7 8))

Haskell	Curry	

Mapping	with	binary	func2ons

6-8

> (my-map2 pow (list 2 3 5) (list 6 4 2))
'(64 81 25)

> (my-map2 cons (list 2 3 5) (list 6 4 2))
'((2 . 6) (3 . 4) (5 . 2))

> (my-map2 cons (list 2 3 4 5) (list 6 4 2))

ERROR: my-map2 requires same-length lists

(define (my-map2 binop xs ys)
 (if (not (= (length xs) (length ys)))
 (error "my-map2 requires same-length lists")
 (if (or (null? xs) (null? ys))
 null
 (cons (binop (first xs) (first ys))
 (my-map2 binop (rest xs) (rest ys))))))

Built-in	Racket	map	Func2on	
Maps	over	Any	Number	of	Lists

6-9

> (map (λ (x) (* x 2)) (range 1 5))
'(2 4 6 8)

> (map pow (list 2 3 5) (list 6 4 2))
'(64 81 25)

> (map (λ (a b x) (+ (* a x) b))
 (list 2 3 5) (list 6 4 2) (list 0 1 2))
'(6 7 12)

> (map pow (list 2 3 4 5) (list 6 4 2))
ERROR: map: all lists must have same size;
arguments were: #<procedure:pow> '(2 3 4 5) '(6 4 2)

Recall	the	List	Filtering	Pa9ern	

(define (filterP xs)
 (if (null? xs)
 null
 (if (P (first xs))
 (cons (first xs) (filterP (rest xs)))
 (filterP (rest xs)))))

#t #f #t

v1 v2 vn

P P P

�

� vn v1

(filterP (list v1 v2 … vn))

6-10

Express	Filtering	via	Higher-order	my-filter

6-11

(define (my-filter pred xs)
 (if (null? xs)
 null
 (if (pred (first xs))
 (cons (first xs)
 (my-filter pred (rest xs)))
 (my-filter pred (rest xs)))))

Built-in	Racket	filter	func2on	acts	just	like	my-filter

filter	Examples	

6-12

> (filter (λ (x) (> x 0)) (list 7 -2 -4 8 5))

> (filter (λ (n) (= 0 (remainder n 2)))
 (list 7 -2 -4 8 5))

> (filter (λ (xs) (>= (len xs) 2))
 (list (list 2 3) (list 4) (list 5 6 7))

> (filter number?
 (list 17 #t 3.141 "a" (list 1 2) 3/4 5+6i))

> (filter (lambda (binop) (>= (app-3-5 binop)
 (app-3-5 (flip2 binop))))
 (list sub2 + * avg pow (flip2 pow)))

Recall	the	Recursive	List	Accumula2on	Pa9ern	

combine	 nullval	

(recf (list v1 v2 … vn))

v1 v2 vn �
combine	 � combine	

(define (rec-accum xs)
 (if (null? xs)
 nullval
 (combine (first xs)
 (rec-accum (rest xs)))))

	

6-13

Express	Recursive	List	Accumula2on	via	
Higher-order	my-foldr

6-14

(define (my-foldr combine nullval vals)
 (if (null? vals)
 nullval
 (combine (first vals)
 (my-foldr combine
 nullval
 (rest vals)))))

combine	 nullval	

v1 v2 vn �
combine	 � combine	

my-foldr	Examples	

6-15

> (my-foldr + 0 (list 7 2 4))

> (my-foldr * 1 (list 7 2 4))

> (my-foldr - 0 (list 7 2 4))

> (my-foldr min +inf.0 (list 7 2 4))

> (my-foldr max -inf.0 (list 7 2 4))

> (my-foldr cons (list 8) (list 7 2 4))

> (my-foldr append null
 (list (list 2 3) (list 4)(list 5 6 7)))

More	my-foldr	Examples	

6-16

> (my-foldr (λ (a b) (and a b)) #t (list #t #t #t))

> (my-foldr (λ (a b) (and a b)) #t (list #t #f #t))

> (my-foldr (λ (a b) (or a b)) #f (list #t #f #t))

> (my-foldr (λ (a b) (or a b)) #f (list #f #f #f))

;; This doesn’t work. Why not?
> (my-foldr and #t (list #t #t #t))

Mapping	&	Filtering	in	terms	of	my-foldr

6-17

(define (my-map f xs)
 (my-foldr ???

 ???
 xs))

(define (my-filter pred xs)
 (my-foldr ???

 ???
 xs))

Built-in	Racket	foldr	Func2on	
Folds	over	Any	Number	of	Lists

6-18

> (foldr + 0 (list 7 2 4))
13
> (foldr (lambda (a b sum) (+ (* a b) sum))
 0
 (list 2 3 4)
 (list 5 6 7))
56
> (foldr (lambda (a b sum) (+ (* a b) sum))
 0
 (list 1 2 3 4)
 (list 5 6 7))
ERROR: foldr: given list does not have the same size
as the first list: '(5 6 7)

More	foldr	Examples	

6-19

> (foldr + 0 (list 7 2 4))
13
> (foldr (lambda (a b sum) (+ (* a b) sum))
 0
 (list 2 3 4)
 (list 5 6 7))
56
> (foldr (lambda (a b sum) (+ (* a b) sum))
 0
 (list 1 2 3 4)
 (list 5 6 7))
ERROR: foldr: given list does not have the same size
as the first list: '(5 6 7)

Problema2c	for	foldr

6-20

> (locallyBig '(7 5 3 9 8))
'(7 5 9 8)

> (locallyBig '(2 7 5 3 9 8))
'(7 5 9 8)

> (locallyBig '(4 2 7 5 3 9 8))
'(4 7 5 9 8)

(locallyBig nums) returns a new list that keeps all nums that are
bigger than the following num. It always keeps the last num.

locallyBig cannot be defined by fleshing out the following template.
Why not?

(define (locallyBig nums)
 (foldr <combiner> <nullvalue> nums))

locallyBig	with	foldr

6-21

(define (locallyBig nums)
 (second
 (foldr (λ (thisNum nextNum&locallyBigRest)
 (let ((nextNum (first nextNum&locallyBigRest))
 (locallyBigRest
 (second nextNum&locallyBigRest)))
 (list thisNum ; #1: nextNum for elt to left
 ; #2: list from below
 (if (> thisNum nextNum)
 (cons thisNum locallyBigRest)
 locallyBigRest))))
 (list -inf.0 ; #1 initial nextNum
 '()) ; #1 initial list
 nums)))

locallyBig needs (1) next number as well as (2) list from below.
With foldr, we can provide both #1 and #2, and then return #2 at end

foldr-ternop:	more	info	for	combiner	

ternop	 nullval	

(foldr-ternop ternop nullval (list v1 v2 … vn))

v1 v2 vn �
ternop	 � ternop	

(define (foldr-ternop ternop nullval vals)
 (if (null? vals)
 nullval
 (ternop (first vals) ; arg #1
 (rest vals) ; extra arg # 2 to ternop
 ; arg #3
 (foldr-ternop ternop nullval (rest vals))))

	

6-22

In cases like locallyBig, helps for combiner to also take rest of list.

arg #1 arg #2

arg #3

locallyBig	with	foldr-ternop

6-23

(define (locallyBigTernop nums)
 (foldr-ternop
 (λ (thisNum restNums locallyBigRest)
 (if (null? restNums)
 (list thisNum) ; Always include last num in nums
 (let ((nextNum (first restNums))) ; Key info from
 ; extra arg
 (if (> thisNum nextNum)
 (cons thisNum locallyBigRest)
 locallyBigRest))))
 '()
 nums))

> (locallyBigTernop '(4 2 7 5 3 9 8))
'(4 7 5 9 8)

