
Local Bindings and Scope

CS251 Programming
Languages
Fall 2017, Lyn Turbak

Department of Computer Science
Wellesley College

These	slides	borrow	heavily	from	Ben	Wood’s	Fall	‘15	slides,	some	of	which	are		

in	turn	based	on	Dan	Grossman’s	material	from	the	University	of	Washington.		

MoDvaDon	for	local	bindings	
We	want	local	bindings	=	a	way	to	name	things	locally	in	

funcDons	and	other	expressions.		

	

Why?		

–  For	style	and	convenience	
–  Avoiding	duplicate	computaDons	

–  A	big	but	natural	idea:	nested	funcDon	bindings	
–  Improving	algorithmic	efficiency	(not		“just	a	liQle	faster”)	

2 Local Bindings & Scope

let	expressions:	Example	

> (let {[a (+ 1 2)] [b (* 3 4)]} (list a b))
'(3 12)

> (let {[a (+ 1 2)]
 [b (* 3 4)]}
 (list a b))
'(3 12)

Pre$y	printed	form	

3 Local Bindings & Scope

let	in	the		
quadraDc	formula	

(define (quadratic-roots a b c)
 (let {[-b (- b)]
 [sqrt-discriminant
 (sqrt (- (* b b) (* 4 a c)))]
 [2a (* 2 a)]}
 (list (/ (+ -b sqrt-discriminant) 2a)
 (/ (- -b sqrt-discriminant) 2a))))

4 Local Bindings & Scope

Formalizing	let	expressions	

2	quesDons:	

•  Syntax:

–  Each xi is any variable, and e_body and each ei are
any expressions

•  Evaluation:

–  Evaluate each ei to vi in the current dynamic
environment.

–  Evaluate e_body[v1,…vn/id1,…,idn]in the current
dynamic environment.

 Result of whole let expression is result of evaluating e_body.

(let {[id1 e1] ... [idn en]} e_body)

a	new	keyword!	

5 Local Bindings & Scope

Parens	vs.	Braces	vs.	Brackets	

> (let {[a (+ 1 2)] [b (* 3 4)]} (list a b))
'(3 12)

> (let ((a (+ 1 2)) (b (* 3 4))) (list a b))
'(3 12)

> (let [[a (+ 1 2)] [b (* 3 4)]] (list a b))
'(3 12)

> (let [{a (+ 1 2)} (b (* 3 4))] (list a b))
'(3 12)

As	matched	pairs,	they	are	interchangeable.	

Differences	can	be	used	to	enhance	readability.	

6 Local Bindings & Scope

let	is	an	expression	

A	let-expression	is	just	an	expression,		so	we	can	use	it	
anywhere	an	expression	can	go.	
Silly	example:	

(+ (let {[x 1]} x)
 (let {[y 2]
 [z 4]}
 (- z y)))

7 Local Bindings & Scope

let is just syntactic sugar!

(let {[id1 e1] … [idn en]} e_body)

desugars	to		
	

 ((lambda (id1 … idn) e_body) e1 … en)

Example:	

(let {[a (+ 1 2)] [b (* 3 4)]} (list a b))

desugars	to		

 ((lambda (a b) (list a b)) (+ 1 2) (* 3 4))

	

8 Local Bindings & Scope

Avoid	repeated	recursion	

Consider this code and the recursive calls it makes
–  Don’t worry about calls to first, rest, and null?

because they do a small constant amount of work

(define (bad-maxlist xs)
 (if (null? xs)
 -inf.0
 (if (> (first xs) (bad-maxlist (rest xs)))
 (first xs)
 (bad-maxlist (rest xs)))))

9 Local Bindings & Scope

Fast	vs.	unusable	

bm 50,…

(if (> (first xs)
 (bad-maxlist (rest xs)))
 (first xs)
 (bad-maxlist (rest xs)))

bm 49,… bm 48,… bm 1

bm 1,… bm 2,… bm 3,… bm 50

…

bm 50

250

times bm 2,…

bm 3,…

bm 3,…

bm 3,…

(bad-maxlist (range 1 51))

(bad-maxlist (range 50 0 -1))

10 Local Bindings & Scope

Some	calculaDons	

Suppose one bad-maxlist call’s if logic and calls to null?,
first?, rest take 10-7 seconds total

–  Then (bad-maxlist (list 50 49 … 1)) takes 50 x 10-7 sec
–  And (bad-maxlist (list 1 2 … 50))

takes (1 + 2 + 22 + 23 + … + 249) x 10-7
= (250 - 1) x 10-7 = 1.12 x 108 sec = over 3.5 years

–  And (bad-maxlist (list 1 2 … 55))
 takes over 114 years

–  And (bad-maxlist (list 1 2 … 100))
takes over 4 x 1015 years.
 (Our sun is predicted to die in about 5 x 109 years)

–  Buying a faster computer won’t help much J

The key is not to do repeated work!
–  Saving recursive results in local bindings is essential…

11 Local Bindings & Scope

Efficient	maxlist	

(define (good-maxlist xs)
 (if (null? xs)
 -inf.0
 (let {[rest-max (good-maxlist (rest xs))]}
 (if (> (first xs) rest-max)
 (first xs)
 rest-max))))

gm 50,… gm 49,… gm 48,… gm 1

gm 1,… gm 2,… gm 3,… gm 50

12 Local Bindings & Scope

Transforming	good-maxlist	
(define (good-maxlist xs)
 (if (null? xs)
 -inf.0
 (let {[rest-max (good-maxlist (rest xs))]}
 (if (> (first xs) rest-max)
 (first xs)
 rest-max))))

(define (good-maxlist xs)
 (if (null? xs)
 -inf.0
 ((� (fst rest-max) ; name fst too!
 (if (> fst rest-max) fst rest-max))
 (first xs)
 (good-maxlist (rest xs)))))

(define (good-maxlist xs)
 (if (null? xs)
 -inf.0
 (max (first xs) (good-maxlist (rest xs)))))

(define (max a b)
 (if (> a b) a b))

13 Local Bindings & Scope

Your	turn:	sumProdList	

(sumProdList '(5 2 4 3)) –> (14 . 120)

(sumProdList '()) –> (0 . 1)

14 Local Bindings & Scope

Given	a	list	of	numbers,	sumProdList	returns	a	pair	of	
(1)  the	sum	of	the	numbers	in	the	list	and	

(2)  The	product	of	the	numbers	in	the	list	

Define	sumProdList.	Why	is	it	a	good	idea	to	use	let	
in	your	definiDon?		

and	and	or	sugar	
(and)		desugars	to		#t
(and e1)		desugars	to		e1
(and e1 …)		desugars	to		(if e1 (and …) #f)

(or)		desugars	to		#f
(or e1)		desugars	to		e1
(or e1 …)		desugars	to			
				(let ((id1 e1))
 (if id1 id1 (or …))
where	id1	must	be	fresh	–	i.e.,	not	used	elsewhere	in	
the	program.			

•  Why	is	let	needed	in	or	desugaring	but	not	and?		
•  Why	must	id1	be	fresh?		

15 Local Bindings & Scope

Scope	and	Lexical	Contours	

scope	=	area	of	program	where	declared	name	can	be	used.		
	

Show	scope	in	Racket	via	lexical	contours	in	scope	diagrams.	

(define add-n (λ (x) (+ n x)))

(define add-2n (λ (y) (add-n (add-n y))))

(define n 17)

(define f (λ (z)

 (let {[c (add-2n z)]

 [d (- z 3)]}

 (+ z (* c d)))))
 16 Local Bindings & Scope

DeclaraDons	vs.	References	

A	declara7on	introduces	an	idenDfier	(variable)	into	a	scope.	
	

A	reference	is	a	use	of	an	idenDfier	(variable)	within	a	scope.		
	

We	can	box	declaraDons,	circle	references,	and	draw	a	line	

from	each	reference	to	its	declaraDon.		Dr.	Racket	does	this	

for	us	(except	it	puts	ovals	around	both	declaraDons	and	

references).	

	

An	idenDfier	(variable)	reference	is	unbound	if	there	is	no	
declaraDon	to	which	it	refers.		

	

	

	
17 Local Bindings & Scope

Scope	and	Define	Sugar	

(define (add-n x) (+ n x))

(define (add-2n y) (add-n (add-n y)))

(define n 17)

(define (f z)

 (let {[c (add-2n z)]

 [d (- z 3)]}

 (+ z (* c d)))))
 18 Local Bindings & Scope

Shadowing	

(let {[x 2]}

 (- (let {[x (* x x)]}

 (+ x 3))

 x))

An	inner	declaraDon	of	a	name	shadows	uses	of	outer	declaraDons	
of	the	same	name.	

Can’t	refer	to		

outer	x	here.	

19 Local Bindings & Scope

Alpha-renaming	

(define (f w z)
 (* w
 (let {[c (add-2n z)]
 [d (- z 3)]}
 (+ z (* c d))))))

Can	consistently	rename	idenDfiers	as	long	as	it	doesn’t	change	the	

connecDons	between	uses	and	declaraDons.	

(define (f c d)
 (* c
 (let {[b (add-2n d)]
 [c (- d 3)]}
 (+ d (* b c))))))

(define (f x y)
 (* x
 (let {[x (add-2n y)]
 [y (- d y)]}
 (+ y (* x y))))))

OK	

Not	OK	

20 Local Bindings & Scope

Scope,	Free	Variables,	and	Higher-order	FuncDons	

(define (make-sub n)

 (λ (x) (- x n)))

(define (map-scale factor ns)

 (map (λ (num) (* factor num)) ns))

In	a	lexical	contour,	an	idenDfier	is	a	free	variable	if	it	is	not	
defined	by	a	declaraDon	within	that	contour.		
	

Scope	diagrams	are	especially	helpful	for	understanding	the	

meaning	of	free	variables	in	higher	order	funcDons.	

21 Local Bindings & Scope

Your	Turn:	Compare	the	Following	

(let {[a 3] [b 12]}
 (list a b
 (let {[a (- b a)]
 [b (* a a)]}
 (list a b))))

(let {[a 3] [b 12]}
 (list a b
 (let {[a (- b a)]}
 (let {[b (* a a)]}
 (list a b)))))

22 Local Bindings & Scope

More	sugar:	let*

(let* {} e_body)		desugars	to		e_body

(let {[a 3] [b 12]}
 (list a b
 (let* {[a (- b a)]
 [b (* a a)]}
 (list a b)))))

(let* {[id1 e1] …} e_body)

 desugars	to	(let {[id1 e1]}
 (let* {…} e_body))

Example:		

23 Local Bindings & Scope

Local	funcDon	bindings	with	let

•  Silly example:

•  Private helper functions bound locally = good style.
•  But can’t use let for local recursion. Why not?

(define (quad x)
 (let ([square (lambda (x) (* x x))])
 (square (square x))))

(define (up-to-broken x)
 (let {[between (lambda (from to)
 (if (> from to)
 null
 (cons from
 (between (+ from 1) to))))]}
 (between 1 x)))

24 Local Bindings & Scope

?

letrec	to	the	rescue!	
(define (up-to x)
 (letrec {[between (lambda (from to)
 (if (> from to)
 null
 (cons from
 (between (+ from 1) to))))]}
 (between 1 x)))

In	(letrec {[id1 e1] ... [idn en]} e_body),		
id1	…	idn	are	in	the	scope	of	e1	…	en	.		

25 Local Bindings & Scope

Even	BeQer	

(define (up-to-better x)
 (letrec {[up-to-x (lambda (from)
 (if (> from x)
 null
 (cons from
 (up-to-x (+ from 1)))))]}
 (up-to-x 1)))

•  FuncDons	can	use	bindings	in	the	environment	where	they	are	

defined:	

–  Bindings	from	“outer”	environments	

•  Such	as	parameters	to	the	outer	funcDon	

–  Earlier	bindings	in	the	let-expression	
•  Unnecessary	parameters	are	usually	bad	style	

–  Like	to	in	previous	example	

26 Local Bindings & Scope

Mutual	Recursion	with	letrec	
(define (test-even-odd num)
 (letrec {[even? (λ (x)
 (if (= x 0)
 #t
 (not (odd? (- x 1)))))]
 [odd? (λ (y)
 (if (= y 0)
 #f
 (not (even? (- y 1)))))]}
 (list (even? num) (odd? num))))

> (test-even-odd 17)
'(#t #f)

27 Local Bindings & Scope

Local	definiDons	are	sugar	for	letrec
(define (up-to-alt2 x)
 (define (up-to-x from)
 (if (> from x)
 null
 (cons from
 (up-to-x (+ from 1)))))
 (up-to-x 1))

(define (test-even-odd-alt num)
 (define (even? x)
 (if (= x 0) #t (not (odd? (- x 1)))))
 (define (odd? y)
 (if (= y 0) #f (not (even? (- y 1)))))
 (list (even? num) (odd? num)))

28 Local Bindings & Scope

Nested	funcDons:	style	

•  Good style to define helper functions inside the functions they
help if they are:
–  Unlikely to be useful elsewhere
–  Likely to be misused if available elsewhere
–  Likely to be changed or removed later

•  A fundamental trade-off in code design: reusing code saves
effort and avoids bugs, but makes the reused code harder to
change later

29 Local Bindings & Scope

Local	Scope	in	other	languages	

What	support	is	there	for	local	scope	in	Python?		

JavaScript?		

Java?		

	

You	will	explore	this	in	a	future	pset!	

30 Local Bindings & Scope

PragmaDcs:	Programming	Language	Layers	

kernel

syntactic sugar

primitive
values/datatypes

system libraries

user libraries

31 Local Bindings & Scope

Where	We	Stand	

Kernel	 Sugar Built-in	
	library	func7ons

User-defined	
library	func7ons

32 Local Bindings & Scope

