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Wellesley College   ◊   CS251 Programming Languages   ◊   Spring 2000

COURSE INFORMATION

Professor: Franklyn Turbak (please call me "Lyn")
Office: SCI 121B (behind the mini-focus consultant’s desk)
Phone: x3049
E-mail: fturbak@wellesley.edu (or “Franklyn Turbak” in First Class)                                     
Lectures: SCI E111, Tuesday/Thursday, 2:40pm – 4:00pm
Office Hours: Tuesday 4pm – 6pm; Wednesday 1:30pm —3:30pm; Thursday: 8pm -

10pm. Appointments can be made for other times.  I sometimes may have to
reschedule office hours to attend a meeting or talk. During a typical week
this semester, I will spend all of Monday and most of Friday doing research
at Boston University, so these tend not to be good days to meet.

COURSE OVERVIEW

There are thousands of programming languages, but only a small number of important
programming language ideas. We will elucidate some of these ideas, and use them to understand,
evaluate, and compare programming languages.

There are several themes that run through the course:

• Dimensions:  Programming languages can be analyzed along a number of dimensions. The
dimensions we will use to study languages include first-class values, naming, state, data,
control, types, safety, and memory management.

• Programming Paradigms: Programming languages can embody many different models of
computation. Java is representative of the object-oriented model, while C is a popular
exemplar of the imperative model. In this course, we will study four programming
paradigms: function-oriented programming, imperative programming, object-oriented
programming, and logic-oriented programming.  We will read and write programs in all of
these paradigms, but most of our focus will be on the functional paradigm.

• Interpreters:  One of the best ways to understand the design space of programming
languages is to study interpreters --- programs that implement one programming language
(the object language) on top of another (the implementation language). Reading, modifying,
and building interpreters are key activities in this course. We will use Scheme and ML as the
implementation languages for various “toy” object languages

PREREQUISITES

The official prerequisite for CS251 is CS230, Data Structures.  We will not make use of many of
the details of CS111 and CS230, but we will be revisiting general themes (e.g. abstraction,
modularity, recursion, abstract data types).  The only other prerequisite for this course is a
burning desire to learn about important ideas in programming languages.
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 BOOKS, NOTES, & PAPERS

Textbooks: There are two required textbooks this semester:

• Structure and Interpretation of Computer Programs, 2nd edition  (SICP) by Abelson and
Sussman with Sussman (MIT Press, 1996). This is the textbook used in 6.001 at MIT. Many
people rate it as the best computer science text ever written (I am among them). It is a must
read for any computer science student, but it is not a quick read.  Plan to read it carefully
many times through; you will learn something new on each pass. Although it is not about
programming languages per se, it has more insight into the essence of programming
languages than most self-proclaimed programming language texts.  Chapter 4 on interpreters
is particularly relevant to CS251.  This textbook is also a good way to learn how to program
Scheme, although that is not its primary purpose.

• ML for the Working Programmer, 2nd edition (MLWP) by Lawrence Paulson (Cambridge
University Press, 1996). This is an excellent resource for learning how to do higher-order
typed programming in ML. It contains many nice examples of typeful programming, higher-
order functions, immutable data structures, and interpreters.

Both books are available at the Wellesley bookstore. You may be able to find a cheaper copy
of SICP either (1) at the “hurt books” section of section of MIT Press, which is across the
street from the MIT Coop in Cambridge or (2) at MIT (with hundreds of students taking
6.001 every semester, there must be a fair number of used copies around).

Course Notes: Much of the material I will cover in lecture is not covered in the above textbooks,
but will be summarized in notes that I will post throughout the term. However, I will not have
notes on all topics, so I strongly recommend that you take detailed notes in class.

Papers:  At a few points during the term, I will assign reading of classic papers from the field.

Reserved Materials: Several books relevant to this course are on reserve in the Science Center
Library; copies of some books are also available in the Computer Science resource room (SCI
173). They are listed below. I encourage you to become familiar with this collection and to
consult it often.

Books on Programming Languages in General   

Programming Languages: A Grand Tour, edited by Ellis Horowitz. An excellent collection of
classic programming languages papers, some of which you will be required to read this term.
There are two copies on reserve, neither of which may leave the library: a first edition (1983) and
a third edition (1987).  They are basically the same, although the later edition has some newer
articles.

Principles of Programming Languages: Design, Evaluation, and Implementation, by Bruce
MacLennan (1987). Discusses principles of programming language design in the context of
actual programming languages. Used as a textbook in previous terms of CS251.

Programming Languages: An Interpreter-Based Approach, by Samuel Kamin (1990). Uses
Pascal-based interpreters to explore toy versions of the following modern programming
languages: Lisp, APL, Scheme, SASL, Clu, Smalltalk, and Prolog. The strength of this book is
that each chapter contains a discussion of the real language on which the corresponding toy
language is based; I heartily recommend that you read these discussions. Used as a textbook in
previous terms of CS251.



3

Essentials of Programming Languages  (EOPL) by Friedman, Wand, and Haynes (MIT
Press, 1992).  This book uses interpreters written in Scheme to explore programming
langauge features and paradigms.  This is the strategy that we will follow throughout
much of the course, although the particular interpreters we use are different than those in
the book. The book is well worth reading; the initial chapters are especially helpful for
learning Scheme. Used as a textbook in previous terms of CS251.

Programming Languages: Concepts and Constructs, by Ravi Sethi (1989).

Programming Languages: History  and Fundamentals, by Jean Sammet, (1969).

Introduction to the Theory of Programming Languages, by Bertrand Meyer (1991).

Principles of Programming Languages, by R. D. Tennent (1981)

Programming Language Concepts, by Carlo Ghezzi and Mehdi Jazayeri (1987).

Books on Particular Programming Languages or Paradigms

LISP, Patrick Henry Winston and Berthold K. P. Horn (1984)

Common Lisp: The Language, Guy L. Steele, Jr. (1990).

APL: An Interactive Approach, by Leonard Goodman and Allen J. Rose. (1984).

Scheme and the Art of Programming, by George Springer and Dan Friedman (1989).

Functional Programming: Application and Implementation, by Peter Henderson (1980).

Abstraction and Specification in Program Development, by Barbara Liskov and John Guttag
(1986). The textbook for 6170, MIT's course in software engineering. Includes an overview of
CLU and a CLU language manual.

Smalltalk-80, the Language, by Adele Goldberg and Dave Robson (1985).

The Art of Prolog, by Leon Sterling and Ehud Shapiro (1986).

Programming in Prolog, by W.G. Clocksin, C.S. Mellish (1987).

On to Java, by Patrick Henry Winston and Sundar Narasimhan (Addison-Wesley, 1996).
This is a good and relatively short and inexpensive introduction to programming in Java.
TheOn to C and On to C++ books by these authors are also recommended for an
introduction to these other languages.

Other Resources: The Science Center Library houses many relevant books other than those on
reserve. An easy way to find out what's available is to consult the on-line library catalog. To do
this, execute telnet library on Lucy.

The MIT Laboratory for Computer Science has an excellent computer science library on the first
floor of building NE43 (also known as "Tech Square") on the MIT campus.  This is an especially
good place to find journals and technical reports. For an on-line catalog, telnet to reading-
room.lcs.mit.edu.
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The Barker Engineering Library at MIT (on the 5th floor of building 10, under the big dome)
houses an extensive collection of computer science books. The on-line catalog is accessible by
telneting to library.mit.edu.

HOMEWORK

There will be ten weekly problem sets during the semester. These will include pencil and paper
problems and programming problems.  Programs will range from simple programs to substantial
interpreters written in the Scheme and ML. Since the best way I know of understanding
programming languages is by modifying interpreters, many problems will be along these lines.

Many of the assignments will be challenging.  Keep in mind that programming often consumes
more time than you think it will. Start your assignments early! This will give you time to think
about the problems and ask questions if you hit an impasse. Waiting until the last minute to begin
an assignment is a recipe for disaster.

All problem sets  are due by 11:59pm on the advertised due date, which will typically be a
Friday. You only need turn in a "hard" (paper) copy of your assignment; no "soft" (electronic)
copy is required unless I request otherwise. You are required to keep copies of all programs that
you write during the term in case I want to test them out.

Problem sets will be graded on a 100 point scale.  I will strive to have problem sets graded as
soon as possible. At this time, solutions will be distributed with the graded homework.

PROBLEM SET HEADER SHEETS

I would like to get a sense for how much time it takes you to do your CS251problem sets. Please
keep track of the time you spend on each problem of your problem sets, and include this
information on the problem set header sheets that I will provide at the end of each problem set.
Turn in this header sheet as the first page of your solutions.

LATE HOMEWORK POLICY

I realize that it is not always possible to turn in problem sets on time. On the other hand,
turning in one problem set late can make it more difficult to turn in the next problem set on time.
I have decided on the following policy for this course this term:

A problem set due on a given day will be accepted until 11:59pm of that
day without penalty.  A problem set can be turned in n days late if it is
accompanied by n Lateness Coupons.

At the end of this handout, you will find ten Lateness Coupons that you can use throughout the
term. Use them wisely: you only get ten, and they are not copyable or transferable between
students.

You may turn in late problem sets by slipping them under my office door.  Of course, if I hand
out solutions before you turn in a late problem set, you are bound by the Honor Code not to
examine these solutions.

In extenuating circumstances (e.g.,, sickness, personal crisis,  family problems), you may request
an extension without penalty.  Such extensions are more likely to be granted if they are made
before the due date.



5

COLLABORATION POLICY

I believe that collaboration fosters a healthy and enjoyable educational environment. For this
reason, I encourage you to talk with other students about the course and to form study groups.

Unless otherwise instructed, feel free to discuss problem sets with other students and exchange
ideas about how to solve them.  However, there is a thin line between collaboration and
plagiarizing the work of others.  Therefore, I require that you must compose your own solution
to each assignment.  In particular, while you may discuss strategies for approaching the
programming assignments with your classmates and may receive debugging help from them, you
are required to write all of your own code.  It is unacceptable (1) to write a program together
and turn in two copies of the same program or (2) to copy code written by your classmates.
However, it is OK to borrow code from the book and from materials handed out in class.

In keeping with the standards of the scientific community, you must give credit where credit is
due.  If you make use of an idea that was developed by (or jointly with) others, please reference
them appropriately in your work.  E.g., if person X gets a key idea for solving a problem from
person Y, person X's solution should begin with a note that says "I worked with Y on this
problem" and should say "The main idea (due to Y) is ...'' in the appropriate places. It is
unacceptable for students to work together but not to acknowledge each other in their write-ups.

When working on homework problems, it is perfectly reasonable to consult public literature
(books, articles, etc.) for hints, techniques, and even solutions.  However, you must reference any
sources that contribute to your solution. Assignments and solutions from previous terms of
CS251 are not considered to be part of the "public'' literature.  You must refrain from looking at
any solutions from previous terms of CS251 (unless, of course, I explicitly tell you it's OK to do
so). It is my policy that consulting problem set solutions from previous terms constitutes a
violation of the honor code.

EXAMS

There will only be one exam: an open-book final exam during the regular exam period. There are
no mid-term exams in CS251 this semester.

COURSE GRADE

The course grade will be computed as shown below:

Problem sets (total) 75%
Final exam 25%

The default ranges for grades are expressed as a percentage of total points (excluding extra credit):

A 93.33 -- 100
A- 90 -- 93.32
B+ 86.66 -- 89.99
B  83.33 -- 86.65
B- 80 -- 83.32
C+ 76.66-79.99
C 73.33-76.65
C- 70 -- 73.32
D 60 -- 69.99
F below  60
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I reserve the right to lower boundaries between grades, but I will not raise them. This means that
I can grade on a curve, but only in your favor.

The above information is intended to tell you how I grade. It is not intended to encourage a
preoccupation with point accumulation. You should focus on learning the material; the grade will
take care of itself. If you are dissatisfied with the grade you will receive based on the above
scale, I encourage you to turn in extra credit problems to raise your grade.

EXTRA CREDIT

To make up for points lost on problem sets and exams, students often request extra credit
problems. In order to give everyone the same opportunity, I will sometimes include extra credit
problems on the problem sets. The extra credit problems will often be more difficult than the
other problems, but they provide the opportunity to earn extra points toward your course grade.
You should only attempt extra credit problems after completing the assigned problems.

Extra credit problems are entirely optional. Extra credit points will only be factored into
course grades after I have partitioned the grade scale into letter grades. Thus, doing he extra
credit problems may raise your course grade, but not doing extra credit problems will not lower
your course grade.

For maximum flexibility, you may turn in extra credit problems at any time during the term
(through the end of finals week). However, experience has shown that students who leave extra
credit problems until the end of the term rarely turn them in. It is in your best interest to complete
extra credit problems in a timely fashion. I will not hand out solutions to extra credit problems,
but you are encouraged to discuss them with me in person.

PROGRAMMING

We will be writing most programs in two programming languages, both of which will be taught
during the semester:

• Scheme, a dialect of Lisp, will be used to (1) explore the function-oriented programming
paradigm and (2) implement interpreters for various "toy languages" that illustrate important
programming language features or dimensions.

• ML will be used to (1) explore “typeful” programming and (2) implement interpreters similar
to those written in Scheme (for comparison).

The “default” place for you to work on your assignments will be at the CS Department’s Linux
workstations in the mini-Focus. Implementations of Scheme and ML installed on them. We will
have several tutorials during the semester about using Scheme and ML on these machines. There
will also be documentation accessible from the CS251 web page about these systems and related
applications.

In order to use the Linux workstations, you will need a Linux account. To get a Linux
account, please fill out the questionnaire accessible from the CS251 home page ASAP.

There are many free implementations of Scheme and ML that you can install on your personal
computer, if you own one; see the documentation accessible from the CS251 page for details.
However, there are several reasons to prefer working on the Linux workstations:
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• There are likely to be other students working on their CS251 there, increasing the probability
of collaboration.

• Most alums say that getting Unix (of which Linux is an instance) experience is one of the
most important skills you can get acquire while at Wellesley. You will lose your chance to
get this experience if you stick with your Mac or PC (unless, of course,  you install Linux on
them).

• The Scheme and ML environments on the Linux workstations are the only ones I will
officially support.  There are often small differences between Scheme (or ML)
implementations that can cause many frustrating headaches. Although I can try to help with
installing/using other systems, I will have very little time for such activities.

SAVING WORK

Each CS111 student will be given a password-protected account on the CS Dept file server (also
known as nike.wellesley.edu and cs.wellesley.edu). You will have a limited amount of space on
this server to store your course-related files.

You are also expected to keep copies of all your course work on floppy disks or zip disks.
Removable disks are a frail medium that you should handle carefully. Store and transport them in
suitable protected containers. Do not subject them to temperature extremes, put them near
magnetic fields, store them unprotected in your pockets, etc. Even if you handle floppy and zip
disks carefully, they are still prone to failure. For this reason, you should regularly
back up your floppy or zip disks!

Every time you insert a disk into a computer, you may be transmitting a computer virus! Viruses
are nasty software fragments that can erase information on your computer or cause other
malfunctioning. In order to reduce the spread of computer viruses, make sure that any personal
computers you use have appropriate virus protection software installed.

COURSE DIRECTORY

The CS251 course folder is located on nike.wellesley.edu in the directory /usr/users/cs251. This
directory contains material relevant to the class, including course software, and on-line versions
of lecture notes, assignments, and programs. From Netscape, all this information is available via
links the following URL:

                                            http://cs111.wellesley.edu/~cs251

From Linux FTP, Fetch,  or Winsock-FTP, the CS251 directory can be accessed by connecting to
nike.wellesley.edu and navigating to /usr/users/cs251.

COURSE CONFERENCES

There is a CS251-S00 conference in First Class with three subconferences:
• CS251-S00 Announcements will be used to make class announcements, such as corrections to

assignments and clarifications of material discussed in class.
• CS251-S00 Q&A is a forum for you to post questions or comments. They will be answered

by me, a tutor, or a classmate.  This is also a good place to find people to form a study group.
• CS251-S00 Chat is a place for you to have interactive chats with me or with other CS251

students. It is a handy way to get hold of someone who is not near a phone.
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You should plan on reading the CS251 conferences on a regular basis.

FINDING HELP

If you have any questions at all about the class (whether big or small, whether on problem sets
lectures, reading, or whatever) please contact me. That's what I'm here for!

The best time to see me is during my scheduled office hours (which are listed at the top of this
handout).  If these times are not convenient, we can set up an appointment at some other time.
You can set up an appointment by talking with me in person, calling me on the phone, or sending
me email. You can also ask questions by sending me email. I read my email on a regular basis,
and will check it even more frequently in the few days before an assignment is due.

Drop-in tutors are available to answer your questions during certain hours. The names and
schedules of the drop-in tutors will be made available early in the term.  If you are having trouble
with the course, you can request a one-on-one tutor from the Learning and Teaching Center
(LTC) .  This service is confidential and free of charge; please take advantage of it if you need
some extra help! Contact me or LTC for more information about this service.

Finally, when looking for help, don't overlook other students --- not only those who have taken
the course in the past, but your classmates as well.  Your classmates are a valuable resource;
make good use of them!

FEEDBACK

I am eager to hear your feedback on the course! You can talk to me in person, send email, or (if
you wish to remain anonymous) fill out a suggestion form accessible from the CS251 home
page. (It’s not there yet, but will be soon).

STUDENTS WITH SPECIAL NEEDS

If you have any disabilities (including "hidden" ones, like learning disabilities), I encourage you
to meet with me so that we can discuss accommodations that may be helpful to you.
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LATENESS COUPONS

Below are ten Lateness Coupons.  A problem set that is n days late must be accompanied with n
Lateness Coupons in order to be accepted.  That is, each coupon gives you one extra day to turn
in a problem set. You may use them in any manner in which you wish -- e.g., turn in every
problem set one day late, or turn in one problem set ten days late.  Coupons are not transferable
between students.

CS251 Lateness Coupon #1

CS251 Lateness Coupon #2

CS251 Lateness Coupon #3

CS251 Lateness Coupon #4

CS251 Lateness Coupon #5

CS251 Lateness Coupon #6

CS251 Lateness Coupon #7

CS251 Lateness Coupon #8

CS251 Lateness Coupon #9

CS251 Lateness Coupon #10


