Wellesley College a CS251 Programming Languages a Spring, 2000
FINAL EXAM REVIEW PROBLEMS
Hereisalist of topics covered in CS251 that are fair game for the final exam:

programming paradigms: functional, imperative, object-oriented.

syntax: abstract syntax trees, free variables, substitution, desugaring

evaluation models and interpreters. substitution model, environment model

data: first-class procedures, aggregate data programming, lazy data

scoping: lexical, dynamic, global; block structure; environment diagrams & closures
parameter passing: call-by-value, call-by-name, call-by-need, call-by-reference.

types. dynamic vs. static; explicit vs. reconstructed ; monomorphic vs. polymorphic
imperative programming: mutable data, mutabl e variables, memoization; non-local exits
(abort, I abel /j unp); benefits and drawbacks.

real languages. Scheme, ML. (Note: Y ou will be expected to read and write programsin
Scheme. Y ou will be expected to read ML programs and understand ML type notation, but
will not be expected to write ML programs.)

» toy languages: INTEX, BINDEX, IBEX, FOFL, FOBS, HOFL, HOFLEMT, HOFLEPT,
HOFLIMT, HOFLIPT, HOIL

Note: The following problems are intended to help you review material for the final exam. They
are not necessarily indicative of the kinds of questions that will be asked on the exam (i.e., some
review guestions are mor e difficul t/time consuming than what would be on an exam.) They also do
not cover all of the above topics.

Problem 1: ML Types

Consider the following sequence of function declarationsin the ML language:

fun testl (x, f, g) = (x, f(x), g(x))

fun test2 (x, f, g) = (x, f(x), g(f(x)))

fun test3 (x, f, g) = (x, f(x), g(f(x)), f(g(x)))
fun test4 (x, f, g = (x, f(x), g(x, f(x)))

fun test5 (x, f, g) = (x, f(x), g(f(x), f(g(x))))
fun test6 (x, f, g) = (x, f(x), 9(x, f(g(x))))

Part a. For each of the above function declarations, write down the type that ML would
reconstruct for the function. If ML would not be able to reconstruct a type for afunction, say so
and explain why.

Part b.

(1) Define acurried version of thet est 1 function namedt est 1- curri ed.
(2) Givethetypeof test 1-curri ed.
(3) Below isan expression using testl. Show how to rewriteit usingt est 1- curri ed:

test1(3, fny =>y * 2 fnz =>2z>0)

Part c. Below isacurry2 function curries any function whose argument is atuple of two
values. What isthe type of curry2?

fun curry2 f = (fn x => (fny = f(x,y)))

Part d. Defineanuncurry2 functionthat istheinverseof curry2. That is, for any curried
functionf of two arguments, cur ry2(uncurry2(f)) should beindistinguishable fromf ; and for
any uncurried function g of two arguments, uncur ry2(curry2(g)) should be indistinguishable
fromg.

Part e. While Scheme and ML are similar in many respects, Scheme isadynamically typed
language while ML isa statically typed language. Briefly discuss the advantages and disadvantages
of static typing vs. dynamic typing.

Part f. While both ML and Java are statically typed languages, there are some key differences
between the languages. Briefly describe the main differences.

Problem 2: Explicit Typing

For each of the following two programsin the implicitly-typed HOFLIPT language, trand ate the
program into the explicitly-typed HOFLEPT language.

(program (n)
(bindrec ((even? (abs (n)
(if (=n 0
#t

(odd? (- n 1)))))
(odd? (abs (n)
(if (=n0)
#f
(even? (- n 1)))))
(prepend (even? 5)
(prepend (odd? 5)
(enmpty)))))

(program (hi)
(bindrec ((map (abs (f Ist)
(if (empty? Ist)
(enpty)
(prepend (f (head Ist))
(map f (tail Ist))))))
(fromto (abs (l0)
(if (> 10 hi)
(enpty)
(prepend lo (fromto (+ 10 1)))))))
(bind test-list (fromto 1)
(prepend (map (abs (n) (prepend n (enpty)))
(map (abs (x) (* x x)) test-list))
(prepend (map (abs (b)
(if b
(prepend 1 (enpty))
(prepend 0 (enpty))))
(map (abs (y) (= (nmod y 2) 0))
test-list))
(prepend (map (abs (2z2)
(prepend z
(prepend (* 2 2z)
(enmpty))))
test-1list)

(empty)))))))

PROBLEM 3: Environment Diagrams and M utation
Consider the following procedures in an imperative call-by-value statically-scoped Scheme:

(define make-counterl
(let ((count 0))
(lambda ()
(1 anbda ()
(begin (set! count (+ count 1))

count)))))

(define make-counter?2
(lambda ()
(let ((count 0))
(1 anbda ()
(begin (set! count (+ count 1))

count)))))

(define make-counter3
(I anmbda ()
(I anmbda ()
(let ((count 0))
(begin (set! count (+ count 1))

count)))))

(define test-counters
(1l anrbda (rmake-counter)
(let ((a (nake-counter))
(b (rmake-counter)))

(list (a) (b) (a)))))
a. For each of the following expressions, (1) give the value of the expression and (2) draw an
environment diagram that justifies why the expression has that value. Y ou should assume that all
operands are evaluated in |eft-to-right order.
i. (test-counters make-counter1)

il. (test-counters make-counter2)

iii. (test-counters make-count er 3)

b. Which, if any, of the four procedures defined above could be defined in Pascal ? Explain.

Problem 4: Non-local Exits

A binary treeiseither (1) aleaf or (2) the result of applying the node constructor to aleft binary
tree and aright binary tree. Thel eaf ? predicate determinesif avaueisaleaf (non-node), and the
selectorslef t andri ght extract the left and right subtrees of abinary tree.

Assume that append isa procedure that takes two lists and returns anew list containing all of the
elements of thefirst followed by al of the elements of the second. E.g.:

(append ‘(a b c) ‘(d e)) returnsthelist(a b ¢ d e)

Assume that post pend isaprocedure that takes alist L and avaue V and returns anew list
containing all of the elements of L followed by V. E.g.:

(postpend ‘(a b c¢) d) returnsthelist(a b ¢ d)

Consider the following f ri nge procedure, which iswritten in aversion of call-by-value, statically-
scoped Scheme supporting thel abel andj unp constructs:

(define (fringe tree)
(1 abel return
(letrec ((hel per (lanbda (tr address)
(if (leaf? tr)
(if (nunmber? tr)
(junmp return (cons tr address))
(list tr))
(append (hel per (left tr)
(postpend address ‘left))
(hel per (right tr)
(postpend address ‘right)))))))
(hel per tree ‘())))

Part a. For each of the three expressionsin the following table, indicate the value of the
expression. Assume that the operand expressions of afunction application are evaluated in |eft-to-
right order.

Expression Vaue
‘a ‘b) (node ‘c ‘')
2) (node ‘c ‘d

‘b) (node 3 ‘d
2) (node 3 ‘d)

(fringe (node (node
(fringe (node (node
(fringe (node (node
(fringe (node (node

d))
)))
)))
)

DD |

Part b. Givean English specification for f ri nge.

Part c. Describethe difficulties that would be encountered in implementing f ri nge without | abel and
j unp.

Problem 5. Parameter Passing

Consider the following expression:

(let ((n 0))
(let ((add-twice (lanbda (x)
(begin (set! x (* 2 x))
(set! n (+ n x))
n))))
(let ((test (lanbda (2z)
(+ (* 100 (add-tw ce n))
~(+ (¥ 10 2) 2)))))
(test (add-twice 1)))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
inaversion of lexically-scoped Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism| Value of sample expression
Call-by-value

Call-by-reference
Call-by-name
Call-by-need

Problem 6: Parameter Passing
Consider the following expression:

(let ((a 1))
(let ((inc (lanbda (x)
(begin (set! a (+ a x))
a)))
(f (lambda (y 2z)
(begin
(set! 'y (+y 3))
. (+a(*z2))))))
(f a (inc 1))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
in aversion of Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism| Value of sample expression
Call-by-value

Call-by-reference
Call-by-name
Cdll-by-need

Problem 7: Desugaring
Oneway to define an or construct is as a user-defined procedure:

(define orl (lanbhda (a b) (if a a b))
An alternative way to define an or construct is via syntactic sugar:
(or2 Eq1 Ep) desugars to (let ((1 Ep)) (if 1 1 Ep)) ; assune 1 fresh

Part a. For each of the following parameter passing mechanismsin an imperative version of
statically-scoped Scheme, explain your answer to the following question:

Are(orl E1 Ep) and(or2 E; Ep) interchangeablefor all expressionse; and E»?

o call-by-vaue
» call-by-name
« cal-by-need

Part b. The desugaring for or 2 has the side condition "assume 1 fresh". What could go wrong
with this desugaring if the side condition were omitted?

Part c. What are the advantages of defining alanguage construct via desugaring rather than
adding it asakernel construct of the language?

Problem 8: Block Structure

Trandate each of the following two block-structured top-level FOBS function declarations into an
equivaent collection of FOFL (non-block-structured) function declarations. Recall that a collection
of top-level f un declarationsin FOBS desugar into af unr ec, o that each of the following
function declarationsis recursively defined.

(fun index-of-bs (elt Ist)
(funrec ((index-loop (i L)

(if (enmpty? L)
-1
(if (=elt (head L))
i

(index-loop (+ i 1) (tail L))))))
(index-loop 1 Ist)))

(fun cartesian-product-bs (Istl |Ist2)
(funrec ((prod (Ist)
(if (empty? Ist)
(enpty)
(let ((elt (head Ist)))
(funrec ((duple (b)
(prepend elt
(prepend b
(empty)))))
(map-duple (L)
(if (enmpty? L)
(enpty)
(prepend (duple (head L))
(map-duple (tail L))))))
(append (map-duple |st?2)
(prod (tail Ist)))))))
(prod Istl)))

Problem 9: Static vs. Dynamic Scope
a [6]. Consider the following definitionsin call-by-value Scheme:

(define (raise-to n)
(lanbda (x) (expt x n))) ; (expt x n) conputes xN

(define (sumproc n limt)
(if (>nlimt)
0
(+ (proc n)
(sumproc (+ n1l1) limt))))

For each of the following two scoping mechanisms, indicate the value of the expression (sum
(raise-to 2) 1 3) inaversion of Scheme using that scoping mechanism:

Scoping Mechanism | Valueof (sum (raise 2) 1 3)

Lexicd

Dynamic

b [2]. Canalanguage belexically scoped without being block structured? Briefly explain your
answer.

Problem 10: Scoping

Renowned naming expert Dan Emmet Schoop is experimenting with a new binding construct
caledf I ui d- bi nd. Dan writes the following specification for his construct:

(fluid-bind | E_def E body)
Temporarily assign | to the value of E_def during the evaluation of E_body and then reset |
toitsorigina value. Returnsthe value of E_body. Signalsan error if I isnot already bound
in the enclosing lexical context.

Dan adds his construct to an interpreter for statically-scoped imperative Scheme by extending the
env-eval function with the following clause:

((fluid-bind? exp)

(let ((name (fluid-bind-nane exp)) ; Extracts
(def (fluid-bind-def exp)) ; Extracts E_def
(body (fl uid-bind-body exp))) ; Extracts E_body

(let ((cell (env-lookup nane env))) ; Gves either cell or unbound token
(i f (unbound? cell)
(error "Unbound" nane)) ; Conplain if NAME not bound

(let ((old (cell-ref cell))) ; Save old val ue of
(begin
(cell-set! cell (env-eval def env)) ; Install new val ue of |
(let ((result (env-eval body env)))
(begin

(cell-set! cell old) ; Restore old value of |

result))))))))
8

Part a. Determine the values of the following two expressions that usef | ui d- bi nd:

Expression Vdue

(let ((a 1))
(let ((f (lambda (x) (+ x a))))
(+ (fluid-bind a 20
(f 300))
(f 4000))))
(let ((a 1))
(+ (fluid-bind a 20
(begin
(set! a (+ a 300))
a))

a))

Part b. Dan could have defined f | ui d- bi nd as syntactic sugar for other Scheme constructs.
Below, give adesugaring rule that indicates how f | ui d- bi nd can be written in terms of other
Scheme constructs. Write your desugaring rule as arewrite rule whose formis similar to the

following desugaring rule for | et :

(let ((I Edef) ...) Ebody)
desugars to ((lanbda (I ...) Ebody) Edef -..)

Y ou should strive to avoid accidental name capture.

Part c. Dan'sfriend Bud Lojack writesthefollowing pri nt - nuns procedure in Dan's extended
version of Scheme.

(define (print-nums n)
(begin
(print n)
(fluid-bind n (+ n 1)
(print-nums n))))

Bud evaluates (pri nt - nuns 0), and watches as the numbers 0, 1, 2, etc. are displayed on the
screen. However, Bud is surprised when his procedure eventually crashes dueto alack of stack
gpace. "l thought Scheme was properly tail recursive!” he exclaims. "Why doesn't my procedure
behave like an infinite loop?' Kindly explain to Bud why his program has run out of stack space.

Part d Dan pointsout that in many situationsf | ui d- bi nd acts like a dynamically scoped version
of | et with asingle binding. However, he notesthat f | ui d- bi nd and adynamically scoped | et
can give different behavior in the case where anon-local exit (such asabort, j unp or Scheme's
error congtruct) isencountered during the evaluation of the body expression. Briefly explain
what Dan means by this comment.

PROBLEM 11: Scoping

H&R Block Structure, atax software vendor, has developed a program for computing the cost of
taxable itemsin adynamically scoped imperative call-by-value version of Scheme. Their program
includes the following top-level definitions:

(define *rate* 0.05)

(define taxed
(1 arbda (anount)
(* amount (+ 1 *rate*))))

(define with-rate
(lambda (rate thunk)
(let ((*rate* rate))
(thunk))))

The global variable*r at e* represents the default salestax rate (5%). The proceduret axed Uses
the global value of *r at e* unlessit has been shadowed by alocal binding of *r at e*, such as that
made by wi t h-r at e. This approach is more convenient than having to pass tax rates as explicit
parameters throughout alarge program. For example, consider the expression E¢ax:

(+ (taxed 200)
(+ (wvith-rate 0.075 (lanbda () (taxed 1000)))
(taxed 400)))

This expression evaluates to 210 + 1075 + 420 = 1705.

a. What isthe value of E¢ax in astatically-scoped version of Scheme? Explain.

b.. H&R Block Structure asks you to port their code to alexically-scoped imperative call-by-value
Scheme. Show how to definewi t h-r at e in lexically-scoped Scheme so that it has the same

behavior asthe abovewi t h-r at e in adynamically scoped mini-Scheme. Hint: use side effects.
Also, compare with Problem 10.

10

Problem 12: Variables and Scoping
Consider the following expression in statically-scoped HOIL (the Higher-Order Imperative Language):

(bi ndpar ((a 20)
(z (cell a)))
(bind ((inc! (abs (x)
(begin (= 2z (+ (" 2) x))

(" 2)))))
(bindrec ((s (cons b t))

(t (map inc! s)))
(+ (head t) (head (tail t))))))

Part a. Circledl of the free variable references in the above expression.

Part b. For each bound variable reference, draw an arrow from the reference to the point where the
variableis declared.

Part c. Suppose that the above expression is evaluated in an environment in which
1. map isthe usual higher-order mapping function.
2. dl other free variables areinitially bound to the number 1.

Give the value of the above expression under each of the following parameter passing mechanisms. If the
expression loops, raises an error, or is otherwise undefined, say so.

call-by-vaue:
cal-by-name
call-by-need

11

Problem 13: The Aggregate Data Style of Programming

Here's a Scheme procedure that prompts the user for a sequence of non-negative integers and
returns the percentage of even integersin that sequence. The user indicates the end of the sequence
by typing anegative integer:

(define even-pct
(lanmbda ()
(letrec ((loop (lanbda (n evens total)
(if (<no0
(/ evens total)
(l oop (read-int)
(if (even? n) (+ evens 1) evens)

(+ total 1))))))
(loop (read-int) 0 0))))

Assume that the nullary r ead- i nt procedure prompts the user (viathe prompt i nt >) for asingle
integer and returns thisinteger. Then here's a sample use of even- pct :

(even-pct)

int> 3

int> 8

int> 2

int> -1

0.66666 ; Two out of the three integers were even.

Part a. Rewriteeven- pct asasignal processing style program in terms of the higher-order
proceduresgener at e, map, filter,and fol dr. (SeeAppendix A for definitions of these higher
order procedures.) Y ou may not assume the existence of al engt h function for lists; if you need
one, you must defineit interms of gener at e, map, filter,and fol dr.

Part b. Briefly describe two advantages of writing even- pct in the aggregate data style vs. the
original style.

Part c. Briefly describe two disadvantages of writing even- pct inthe signal processing style vs.
the original style.

Part d. Proponents of lazy functional programming languages claim that lazinessis essential for
programming in the signal processing style. Briefly explain their claim.

12

PROBLEM 14 : Lazy Data

Part a. Lettheterm ordered duple (“orduple” for short) refer to alist of two non-negative
integersin which thefirst integer isless than or equal to the second integer. E.g. (0 2), (1 2)
and (2 2) areall orduples, but (-1 2) and(2 1) arenot orduples. Orduplea issaid to be less
than dupleb if either

1. (+ (first a) (second a)) islessthan(+ (first b) (second b))
or 2.(+ (first a) (second a)) isequal to(+ (first b) (second b))
but(first a) islessthan(first b).

For example, the first nine orduplesin order are:
(00 (01) (02 (11) (03 (12 (04 (13 (22

Using Scheme streams, define an infinite sorted stream of all orduples named al | - or dupl es. You
may use whatever auxiliary procedures you find helpful as part of your definition, including the
higher order stream operators in appendix B.

Part b. Pythagorean triples are length-3 lists of the form (ab ¢) where0 < a£ b and & + b2 = 2.
Using al | - or dupl es from Part aand the stream operators from Appendix B, define an infinite
stream pyt hagor eans that contains all pythagorean triples.

Part c. Thedefinition of al | - or dupl es from part awill not work if lists are used in place of
streams. Explain why.

13

Problem 15: Church Pairs

Although HOFL supports lists, it does not support Scheme-like pairsthat can glue together any
two values. However, it is possible to implement Scheme-like pairs as HOFL functions, as
illustrated by the following HOFL program:

(program (n)
(bindpar ((cons (abs (a b) (abs (f) (f a b)))
(car (abs (p) (p (abs (xy) x))))

_ (cdr (abs (p) (p (abs (x y) ¥)))))
(bindpar ((p (cons (> n 0) n))
. (g (cons (* n 2) (* nn))))
(if (car p)
(car q)
(+ (cdr p) (cdr @))))))

When called on two arguments, a and b, cons returns a procedure (call it p for pair) as aresult.
The pair p isaprocedure of one argument, f , that callsf ona andb. The car procedure takes such
apair p and appliesit to afunction that returns the first of its two arguments, while cdr appliesp to
afunction that returns the second of its two arguments. This representation pairsis called a Church
pair after itsinventor, the logician Alonzo Church.

Part a. Use the substitution model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car . (A similar argument would show that (cdr (cons 3 4)) yields4.)

Part b. Usethe environment model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car .

Part c. Would the above definitions work in adynamically scoped version of HOFL? Explain.

Part d. Trandate the above HOFL program into the explicitly-typed HOFLEPT language. Y ou
will need to make each of cons, car, and cdr polymorphic. The type of cons should be:

(forall (a b)
(-> (a b)
(forall (c)
(-> ((->(ab) c)) c))))

Part e. In Scheme, cons, car, and cdr are not only used to define genera pairs, but can also be
used to define lists. Isthe same true in (untyped) HOFL? How about in explicitly typed
HOFLEPT?

Part f. In HOIL, the imperative version of HOFL, the above definitions can be extended to
support Scheme' s pair mutation operatorsset - car! andset - cdr ! . Show how this can be done
by filling out the the expressions <fill1_i> below.

(bi ndpar
((cons (abs (a b)
(bindpar ((a-cell (cell a))
(b-cell (cell b)))
(abs (f) (f <Fill_1> <fill_2> <Fill_3> <fill_4>))))
(car (abs (p) (p (abs (x y sx sy) x))))

(cdr (abs (p) (p (abs (x 'y sx sy) y))))
(set-car! (abs (p v) (p (abs (x y sx sy) (sx v

)))))
(set-cdr! (abs (p v) (p (abs (x y sx sy) (sy Vv)))))
)

expression using the above definitions)

14

Appendix A: Definitions of Higher-Order List Operations

(define zip
(lambda (Istl Ist?2)
(if (or (null? Istl) (null? Ist2))

(cons (list (car Istl) (car |st2))
(zip (cdr Istl) (cdr Ist2))))))

(define generate
(lambda (seed next done?)
(if (done? seed)
"0

(cons seed (generate (next seed) next done?)))))

(define map
(lambda (f Ist)
(if (null? Ist)
"0
(cons (f (car Ist))
(map f (cdr Ist))))))

(define map2
(lambda (f Istl Ist2)
(map (1 anbda (duple)
(f (first duple) (second duple)))
(zip Istl Ist2))))

(define filter
(lambda (pred Ist)
(if (null? Ist)

()

(if (pred (car Ist))
(cons (car Ist) (filter pred (cdr Ist)))
(filter pred (cdr Ist))))))

(define foldr
(lanbda (binop init Ist)
(if (null? Ist)
init
(binop (car Ist) (foldr binop init (cdr Ist))))))

(define foldr2
(lanbda (ternop init Istl Ist2)
(foldr (lanbda (duple result)
(ternop (first duple) (second duple) result))
init
(zip Istl Ist2))))

(define foldl
(lanmbda (binop init |st)
(if (null? Ist)
init
(foldl binop (binop (car Ist) init) (cdr Ist)))))

(define foldl2
(lanmbda (ternop init Istl Ist2)
(foldl (lanbda (duple result)
(ternop (first duple) (second duple) result))

15

init
(zip I'stl Ist2))))

(define forall?
(lambda (pred |st)
(if (null? Ist)
#t
(and (pred (car Ist))
(forall? pred (cdr Ist))))))

(define forall 2?
(lanbda (pred Istl Ist2)
(forall? (on-duple pred)
(zip Istl Ist2))))

(define exists?
(lambda (pred |st)
(if (null? Ist)
#f
(or (pred (car Ist))
(exists? pred (cdr Ist))))))

(define exists2?
(lanbda (pred Istl Ist2)
(exi sts? (on-duple pred)
(zip Istl Ist2))))

(define sone
(lambda (pred |st)
(if (null? Ist)
#f
(if (pred (car Ist))
(car Ist)
(some pred (cdr Ist))))))

(define sone2
(lanmbda (pred Istl |st2)
(sone (on-duple pred)
(zip Istl Ist2))))

(define on-duple
(1 anbda (f)
(lambda (duple)
(f (first duple) (second duple)))))

16

Appendix B: Definitions of Higher-Order Stream Operations

(define generate-stream
(lanmbda (seed next done?)
(if (done? seed)
t he- enpt y- st ream
(cons-stream seed
(generate-stream (next seed) next done?)))))

(define map-stream
(lambda (f str)
(if (streamnull? str)
t he- enpt y- st ream
(cons-stream (f (head str))
(map-streamf (tail str))))))

(define map-streant
(lambda (f strl str?2)
(if (or (streamnull? strl) (streamnull? str2))
t he- enpt y- st ream
(cons (f (head strl) (head str2))
(map-strean? f (tail strl) (tail str2))))))

(define append-streans
(lambda (strl str2)
(if (streamnull? strl)
str2
(cons-stream (head strl)
(append-streans (tail strl) str2)))))

(defi ne map-append-stream
(lambda (f str)
(if (streamnull? str)
t he- enpt y- st ream
(append-streans (f (head str))
(map- append-streans f (tail str))))))

(define filter-stream
(lanmbda (pred str)
(if (streamnull? str)

t he- enpt y- st ream

(if (pred (head str))
(cons-stream (head str)

(filter-streampred (tail str)))

(filter-streampred (tail str))))))

(define foldr-stream
(lambda (op init str)
(if (null? str)
init
(op (head str)
(foldr-streamop init (tail str))))))

(define foldl-stream
(lambda (op init str)
(if (streamnull? str)
init
(foldl-streamop (op init (head str)) (tail str)))))

17

18

