Welledey College a CS251 Programming Languages a Spring, 2000

PROBLEM SET 3
Due Wednesday, March 8, 2000

Problem 0: Studying BINDEX

All of the problems on this problem set involve the BINDEX language discussed in class or
extensions to this language. Before attempting the problems, you should study the code for the
implementation of the BINDEX language, which can be found in the following directory on
Nike:

/usr/users/cs251/ downl oad/ bi ndex

Although thereis nothing to turn in for this problem, the rest of the problems will be
significantly easier once you understand how BINDEX works.

| have not yet implemented a parser for BINDEX, so the implementation cannot handle the non-
S-expression concrete syntax for BINDEX that | have been using in class. Instead, you should
use the fully parenthesized prefix S-expression concrete syntax indicated by the following
examples:

Non-S-Expression Concrete Syntax
program (a, b) =

S-Expression Concrete Syntax
(program (a b)

bind ¢ as +(a,b)
in div(c,2)

(bind ¢ (+ a b)
(div c 2)))

program (a, b, c) =
*(bind d as *(a,c)
in bind e as —(d, b)
in div(*(b,d), +(e, a)),
bind e as bind b as *(12, a)
in —(b,c)
in div(e,b)
)

(program (a b c)
(* (bind d (* a c)
(bind e (- d b)
(div (* b d) (+ea))))
(bind e (bind b (* 12 a)
(- bc))
(div e b))))

An advantage of the S-expression concrete syntax is that it can be given directly asinput to

Scheme functions when quoted. For example:

Run the averaging programon the inputs 3 and 8

> (env-run ‘(program (a b)
(bind ¢ (+ a b)
(div c 2)))
. ‘(3 8))

In this representation, since they are just S-expressions, BINDEX programs can be named so that

they are easily reusable:

> (define avg
‘“(program (a b)
(bind ¢ (+ a b)
(div c 2))))

> (env-run avg ‘(3 8))
5

> (env-run avg ‘(20 10))
15

Of course, when manipulating such programs you should only use the abstract syntax operators!
For example:

> (program parans avg)
(a b c)

> (bind? (program body avg))
#t

> (bi nd-name (program body avg))
c

Do not use any “raw” Scheme list operations to manipulate BINDEX programs! That is, you
should not use car andcdr to access the components of a node, nor should you usecons, | i st
append, €tc. to create nodes. (But you may use these operations to manipulate lists of formal
parameters, lists of binding names and definitions, etc.)

It is recommended that you get a sense for how BINDEX works by experimenting with the
BINDEX system. To load the BINDEX system, evaluate the following expressionsin MIT-
Scheme:

(cd “/usr/users/cs251/ downl oad/ bi ndex”) ; Connect to BINDEX directory
(1 oad “l oad- bi ndex. scni)
(cd “~") ; Return to your hone directory

Y ou can use subst - r un to run the substitution model interpreter, and env- r un to run the
evaluation model interpreter. E.g.:

Usi ng the avg program defi ned above
> (subst-run avg ‘(3 8))
5

;; Using the avg program defi ned above
> (env-run avg ‘(3 8))
5

When using subst - r un it is helpful to trace the subst and subst - eval functionsto get a sense
for how computation proceeds. For example:

> (trace subst-eval)
subst - eval

> (trace subst)
subst

> (subst-run avg ' (3 8))

Entry (subst 8 'b '(bind ¢ (+ a b) (div c 2)))
| Entry (subst 8 "b '(+ a b))

| Entry (subst 8 'b 'a)

| ==> 3

| Entry (subst 8 "b 'b)
| ==> 8

| ==> (+ a 8)
| Entry (subst 8 'b '(div ¢ 2))
| Entry (subst 8 "b 'c)

| ==>

| Entry (subst 8 'b 2)

| ==> 2

| ==> (div ¢ 2)

==> (bind ¢ (+ a 8) (div c 2))

Entry (subst 3 'a '(bind ¢ (+ a 8) (div c 2)))
| Entry (subst 3 "a '(+ a 8))

| Entry (subst 3 'a 'a)

| ==> 3

| Entry (subst 3 '"a 8)

| ==> 8

| ==> (+ 3 8)

| Entry (subst 3 "a '(div ¢ 2))

| Entry (subst 3 "a 'c)

| ==> ¢

| Entry (subst 3 '"a 2)

| ==> 2

| ==> (div ¢ 2)

==> (bind ¢ (+ 3 8) (div c 2))

Entry (subst-eval '(bind ¢ (+ 3 8) (div c 2)))
| Entry (subst-eval '(+ 3 8))

| Entry (subst-eval 3)

| ==> 3

| Entry (subst-eval 8)
| ==> 8

| ==> 11

| Entry (subst 11 'c '(div ¢ 2))
| Entry (subst 11 'c 'c)
| ==> 11

| Entry (subst 11 'c 2)
| ==> 2

|::> (dIV 11 2)

| Entry (subst-eval '(div 11 2))
| Entry (subst-eval 11)

| ==> 11

| Entry (subst-eval 2)

| ==> 2

|::> 5

==> 5

5

Simlarly, when using eval - run it is helpful to trace the env- eval function to get a sense for
how computation proceeds. For example:

> (trace env-eval)
env- eval

> (env-run avg '(3 8))

Entry (env-eval '(bind ¢ (+ a b) (divc 2)) '((a 3) (b 8)))
|Entry (env-eval '(+ a b) '((a 3) (b 8)))

| Entry (env-eval '"a '((a 3) (b 8)))

| ==> 3

| Entry (env-eval 'b '((a 3) (b 8)))

| ==> 8

| ==> 11

| Entry (env-eval '(div ¢ 2) '"((c 11) (a 3) (b 8)))
| Entry (env-eval 'c '((c 11) (a 3) (b 8)))

| ==> 11

| Entry (env-eval 2 '((c 11) (a 3) (b 8)))

| ==> 2

| ==> 5

==> 5

5

Thefile bi ndex- exanpl es. scmcontains afew simple programs to experiment with, but you are
encouraged to write some of your own aswell. The bi ndex- exanpl es. scmfile also contains an
implementation of asimple test suite that will test an evaluator on alist of programs and
examples and compare the results to the expected results. The variablet est - sui t e contains the
test cases; it isinitially defined to be as follows:

(define test-suite

(list

(list "inc inc '(3) 4)

(list 'c2f c2f '(100) 212)

(list 'c2f c2f '(0) 32)

(list 'c2f c2f '(-40) -40)

(list "calc calc '(20) 10)

(list 'calc calc '(31) 15)

(list "avg avg '(3 8) 5)

(list "avg avg ' (20 10) 15)

(list "test-bindseq test-bindseq '(3) 63)
(l'ist '"test-bindpar test-bindpar '(3) 37)
(list '"test-bindseq2 test-bindseq2 '(3) 6)
(list '"test-bindpar2 test-bindpar2 '(3) 149)
(list "test-ast test-ast '(5 4 2) 42)

))

Y ou are encourage to add new programs and test cases to your own local copy of bi ndex-
exanpl es. scm

Thetest function isused to test a program evaluator (such as subst - r un or env-r un) on the
test casesin test-suite. For example:

> (test subst-run)

Running inc on (3) gives 4. K

Runni ng c2f on (100) gives 212. K
Runni ng c2f on (0) gives 32. XK

Runni ng c2f on (-40) gives -40. K
Runni ng calc on (20) gives 10. K
Runni ng calc on (31) gives 15. K
Runni ng avg on (3 8) gives 5. XK

Runni ng avg on (20 10) gives 15. XK
Runni ng test-bindseq on (3) gives 63. K
Runni ng test-bindpar on (3) gives 37. K
Runni ng test-bindseg2 on (3) gives 6. XK
Runni ng test-bindpar2 on (3) gives 149. K
Running test-ast on (5 4 2) gives 42. XK
Done.

#f

Thetest function complainsif the actual result does not match the expected result specified in
test-suite. For instance, if we change the line

(list "avg avg '(3 8) 5)
intest - sui t e to instead be the (incorrect) line
(list "avg avg '(3 8) 6)
then running (t est subst - run) would indicate what it thinksis an error as follows:
Runni ng avg on (3 8) gives 5 ***ERROR! *** Expected 6

4

Problem 1[25]: Abstract Syntax Trees
Consider the following BINDEX averaging program:
(program (a b)
(bind ¢ (+ a b)
(div c 2)))

Hereisthe abstract syntax tree (AST) for this program:

0 b C i

Note that the multiple parameters of the program are shown branching off a single solid node
that stands for the sequenence of parameters.

Suppose we annotate each node of the abstract syntax tree with the following three pieces of
information:

» Thefree variables of the program or expression rooted at the node.

» The environment in which the node would be evaluated if the program were run on the
actual parameters a= 3 and b = 8. (Write environments as sets of bindings of the form
key = value.)

» Thevalue that would result from evaluating the node in the environment from (2).

The following picture shows the AST for the averaging program annotated with this information:

Fvi)

Fv:fab

e a=3,
b=E}

wal: 5

Fwic)
ervifa=3,
bh=E.
=11}
val: &

Fviak]
emvifa=3,

b=k i w
val: 11

Fv:{k]
ervifa=3,

=R]
val: B

]
emvia=3, m eni': | a=3
h=E. =g
e=11] e=11]
wal: 11 wl T

a b C 2

In this problem, you are to draw a similar annotated AST for the following BINDEX program:

(program(a b c) =
(* (bind d as (* a c)
(bind e as (- d b)
(div (* b d) (+e a))))
(bind e (bind b (* 12 a)
_ (- bc))
(div e b))))

Y ou should annotate each node of the abstract syntax tree with the following three pieces of
information:

» Thefreevariables of the program or expression rooted at the node.

» The environment in which the node would be evaluated if the program were run on the
actual parametersa=>5, b =4, and ¢ = 2. (Write environments as sets of bindings of the
form key = value.)

» Thevalue that would result from evaluating the node in the environment from (2).

Note: for this problem, you will need to use avery large sheet of paper and/or to write very
small. Itisstrongly recommended that you write the solution using pencil (not pen) and paper.
Don’'t waste your time attempting to format it on a computer with a drawing program.

Problem 2[20]: Namingin BINDEX

Part a. Suppose that the following program is run on the argument 3. Indicate the value that
each name will be bound to during the execution, and aso indicate the resulting value of the
program:

;; BI'NDSEQ test program
(program (x)
(bind a (+ x 1)
(bindseq ((a (* x a))
| (b (+x a)))
(bindseq ((a (- a b))
(b (* a a)))
(+ab)))))

Part b. Redo part (a), except using aversion of the program in which every bi ndseq has been
replaced by bi ndpar .

;; BI'NDPAR test program
(program (x)
(bind a (+ x 1)
(bindpar ((a (* x a))
(b (+ x a)))
(bindpar ((a (- a b))
(b (* a a)))
(+ab)))))

Part c. Write the result of desugaring the programs from both part aand part b into BINDEX
programs that use only bind in place of bi ndseq and bi ndpar . (You should perform the
desugaring by hand and not use Schemeto do it for you!)

Part d. Inthesubst function within thefilesubst . scm the case for bind expression is as
follows:

((bind? exp)
(make-bi nd (bi nd-name exp)
(subst int nanme (bind-defn exp))
(if (eg? name (bind-nanme exp))
;; Careful! Don't substitute in this case
(bi nd- body exp)
(subst int nane (bind-body exp)))))

Explain why thereis a special case to handle the situation where the bound variable of a bind
expression is the same as the name being substituted away by the subst function. Use
example(s) to illustrate what would go wrong if this case was not handled specially.

Problem 3[25]: bind*

Suppose that BINDEX is extended with a new binding construct bi nd* that has the same syntax
asbi ndpar and bi ndseq except that it uses the keyword bi nd* in place of bi ndpar and
bi ndseq. Consider the following program using bi nd*:

(program (a b c)
(bind* ((a (+ (* 10 b) c))
(b (+ (* 10 a) c))
(c (+ (¥ 10 a) b)))
(+a(+bc))))

Of course, the result of the above program will depend on the semantics given to the bi nd*
construct. Hereis a skeleton of the definition of env-eval extended with a clause for bi nd*:

(define env-eval
(lambda (exp env)
(cond . . .
((bi nd*? exp)
(env-eval (bind*-body exp)
(fold2 (I anbda (nane defn e)
(env-bi nd nane
(env-eval defn envl)
env2))
env
(bi nd*- names exp)
(bi nd*-defns exp))))

)))

The meaning of the bi nd* construct depends on whether fold2 isf ol dl 2 or f ol dr 2, whether
envlisenv or e, and whether env2 isenv or e. For each of the following combinations, indicate
the result of the above program on the input values ‘(1 2 3). Show your work for partial credit.

fold2 envl env2
foldl2 e e
foldl2 e env
foldl 2 env e
foldl2 env env
foldr2 e e
foldr2 e env
foldr2 env e
foldr2 env env

Problem 4[50]: IBEX Evaluation

In this problem you will extend the BINDEX language to support boolean values and various
constructs that manipulate boolean values. The resulting language is called IBEX, for Integer and
Boolean Expression language. Before continuing with this problem, you should read the
description of IBEX in Appendix A.

The implementation of BINDEX has been changed in afew ways to better support the
implementation of IBEX. These changes are summarized in Appendix B, which you should also
read before attempting this problem.

The code you will extend for this problem can be found in the i bex directory within the CS251
download directory. Y ou should copy the files from this directory to your own local directory,
where you will be changing them. To load the IBEX system, you should load the | oad-

i bex. scmfile by executing (load “load-ibex.scm”) in MIT-Scheme. (Y ou may need to use cd to
first change the directory to the directory containing your local copy of thei bex directory.)

For this problem, you should turn in your final copies of the following files, all of which you will
modify as part of this problem.

desugar.scm env-eval . scm free-vars.scm pri nmops. scm
rename. scm subst -eval . scm subst.scm

Part 4a[10]: Implementing IBEX Primops

Y ou should begin by implementing the new IBEX primops, which consist of the relational
primops (<, <=, =, ! =, >=, >) and the logical primops (band, bor, not). See Appendix A for the
meaning of this primops, and Appendix B for details on how to add new primops.

All you need to do for this part is to extend the definition of pri nop- env inthefile
prinops. scm You should test your changes by evaluating the expression

(test-prinmops env-run),

which will apply env- r un to each program in a suite of test cases and compare the actual answer
to the expected answer. |If the two match, you will seean ! at the end of aline. If the expected
and actual answers for atest case do not match, you will see the string * * * WRONG ANSVER! * * *
along with an explanation of the mismatch between the actual and expected answers.

Make sure you remember to re-evaluate the definition of pri nmop- env every time you change it
beforeyou test it. Or better yet, evaluate (1 oad “1 oad-i bex. scni') before performing tests
after making a change.

To see more about the test programs in the test suite, see thefilei bex- exanpl es. scm (Feel free
to extend the suites of test cases to include test cases of your own!) Each entry of t est-suiteis
alist of the following four elements:

» the name of the tested program.

» an expression evaluating to the S-expression for the program.
» A list of arguments on which to test the program.

» The expected value of applyin the program to the arguments.

For example, if avg is defined asin Problem O, then here is a sample test case:
(list "avg avg ‘(3 8) 5)
When such atest case appears in the test suite, testing it will print the following:
9

Runni ng avg on (3 8) gives 5. K

On the other hand, suppose the + primop was accidentally given the meaning of *. Then testing
the above test case would yield:

Runni ng avg on (3 8) gives 12 ***WWRONG ANSVER! *** Expected 5

Part 4b [15] Implementingi f, scand, and scor in the Environment Model

The next task isto extend the environment model interpreter (as embodied in the env- eval
function in thefileenv- eval . scm) to handle the three constructsi f , scand, and scor, as
described in Appendix A. You should add one clause for each of these constructs to the main
cond expression of env- eval .

Y ou should test that these constructs work by evaluating the expression
(test-conditionals env-run-no-desugar)

Thiswill evaluate a number of test casesinvolvingi f, scand, and scor . Your evaluation clauses
are probably correct if all thetest casesend in k! .

By the way, the env- r un- no- desugar isaversion of env- r un that does not desugar (see Part
4c) the program body before evaluating it. The env- r un function, which does desugar the
program body, will give errorsif used in this context --- at least until the desugar functionis
extended to handlei f , scand, and scor in Problem 4c.

Part 4c [15]: Desugaring scand and scor

It would be possible to complete the IBEX implementation by adding three clauses (onefori f ,
onefor scand, onefor scor) to several other function definitions (e.g. subst , subst - eval ,
free-vars, etc.) But abetter approach isto observe that scand and scor can be *desugared”
into instances of if asfollows:

(scand E1 E2) desugarsto(if E1 E2 #f)
(scor E1 E2) desugarsto(if E1 #t E2)

This means that any program with scand andscor can be desugared (i.e., rewritten) to a
program that replaces every occurrence of scand andscor by if. If every IBEX program isfirst
desugared before any further processing, then scand and scor do not have to be handled by any
functions other than the desugar function that implements the desugaring. This greatly
simplifiesthe rest of the language implementation, which only needs to handle thei f construct.
This strategy is used in BINDEX to ssimplify the handling of bi ndseq and bi ndpar , both of
which can be desugared into bi nd.

In this part, you should implement the desugaring of scand and scor by:

» Adding clausesfori f, scand, and scor to thedesugar functionindesugar.scm The
desugar function takes a single expression and returns the desugared version of that
expression.

» Adding aclauseforif tothefree-vars functioninfree-vars. scm Thefree-vars
function returns a set of the free variables in an expression. For this, you will need the set
operations described in class.

» Adding aclauseforif totherename functioninrename. scm The call
(rename old new exp) renamesall free occurrence of the variableold to the variable
new in the expression exp. It may need to perform other renamings to prevent inadvertent
variable capture.

10

Note that it is necessary to modify f r ee- var s and r ename at the same time asdesugar , because
the desugaring of bi ndpar depends on these functions. However, because both f r ee- var s and

r enane are guaranteed to be called only on desugared expressions, they only need a clause for i f
(and not clauses for scand andscor).

After you make these changes, the bi ndseq, bi ndpar, scand, andscor clausesinenv-eval will
no longer be used when calling env- r un, because al instances of these constructs will have been
desugared away. However, these clauses will still be used when env- eval - no- desugar is
invoked.
Y ou should test your modifications by evaluating the expression

(test-ibex env-run)
Thiswill evaluate a number of test casesinvolvingi f, scand, and scor , where programs are
first desugared before evaluation. Y our evaluation clauses are probably correct if al the test
casesendin k! .
Part 4d: Implementingi f in the Substitution M odel

Asthefina step of implementing IBEX, extend the subst functioninsubst.scmandt he
subst - eval functioninsubst-eval . scmto handlethei f construct. Test your modification via

(test-ibex subst-run)

11

Problem 5[30] Dynamic Type-Checking in IBEX

Informally, atypeisacollection of values. We shall use thetypei nt to stand for the collection
of all integer values and the type bool to stand for the collection whose elements are true and
false. The collections that these types stand for are disjoint, so no value can have more than one
of these types. Furthermore, since every IBEX value is either an integer or aboolean, it has
exactly one of these two types. So we can classify IBEX values by the following function:

(define type- of
(lanmbda (val)
(cond ((integer? val) 'int)
((bool ean? val) ' bool)
(el se (throw 'type-of-unknown-val ue val))

)))

In the BINDEX language, every value was an integer and every primop was a binary operator
with two integer arguments and an integer result. Because of this uniformity, not alot can go
wrong in the evaluation of a BINDEX expression. The only kind of errors we can encounter
when running a BINDEX program are:

» Anunbound variable, suchasy in(program (x) (+ x y))

> Anattempt to divide anumber by O, asin (program (x) (div x 0)) or (program
(x) (mod x 0)).

But in IBEX, many additional kinds of problems can arise:

» A primop may get the wrong number of arguments—e.g., (band (< 1 2)),
(not (<12) (<34),(+1223).

> A primop may get one or more arguments that are the wrong type—e.g., (+ 1 #t),
(band #f 3), (not 3).

» Anif expression may have anon-booleantest—eg., (if 2 (+ 3 4) (* 5 6)).

» A scand or scor expression may have non-boolean rands. E.g. (scand #t 3),
(scor #f 5).

All of these new kinds of errorsare called typeerrors.

A language is said to have dynamic type checkingif al type errors encountered at run-time
(i.e., when the program is run) are reported. Scheme is an example of alanguage with dynamic
type checking. For instance, evaluating (+ 1 #t) in Scheme generates an error

*** ERROR -- NUMBER expected: (+ 1 #t)

And evaluating (not 2 3) in Scheme generates an error like:
*** ERROR -- Wong nunber of argunents passed to procedure: (not 2 3)

But Scheme embodies a different notion of type errorsthan IBEX. For instance, in Scheme, the
addition procedure can have any number of arguments. So (+ 1 2 3) issensiblein Scheme, but
not in IBEX. Asanother difference, Scheme treats any non-false test value in an if expression as
true, so(if 2 (+ 3 4) (* 5 6)) evauatesto 7 in Scheme. However, in IBEX, this expression
should yield atype error. In Scheme, the or special form returns the first non-false value, so (or
1 2) returns 1. Incontrast, the IBEX expression (scor 1 2) should generate atype error.

12

The implementations of the environment and substitution model interpreters from Problem 4
catch some type errors but not others. For instance, running the program (pri mop (x) (+ x
#t)) ontheargument list ‘(1) will eventually attempt to apply the Scheme addition function to
the arguments 1 and #t; this will generate a Scheme type error, as noted above. But unlessyou
have been very careful in your implementation of Problem 4, it islikely that many IBEX
programs that should generate type errors do not. For example, the following IBEX programs
should all generate type errors --- do they in your implementation?

(env-run '(program(a b c) (+abc)) ‘(12 3))

(env-run ‘(program(a b c de f) (if (+ab) (+cd (* ef)))
‘(123456))

(env-run ‘(program (a b) (scor a b)) ‘(1 2))

The goal of this problem isto modify the environment and substitution model interpreters for
IBEX to report all dynamic type errors. To do this, you will need to modify the following three
functions (and potentially add some new auxiliary functions as well):

» primapply inprinmops.scm
> env-eval inenv-eval . scm
» subst-eval insubst-eval.scm

Upon encountering a dynamic type error, you should use thet hr ow construct (see Appendix B)
to generate an exception. (Do not use Scheme'ser ror construct!) The throw construct takes two
operands: a symbolic tag (i.e., a symbol) indicating the kind of exception, and an information
value given more details about the particular exception. For IBEX dynamic type errors, you
should use the following symbolic tags and values:

Kind of TypeError Symbolic Tag Information Value
Number of actual (expect ed expected-num
arguments does not pri mop- w ong- nunber-of -args | got actual-num
match expected number i n offending-primapp)
of arguments.

The type of an actual (expect ed expected-type
argument does not match pri mop- wr ong- ar g-t ype got actual-value

the expected type of the i n offending-primapp)
argument.

Anif expression hasa non- bool ean-i f -t est The offending t est value
non-boolean test.

Here are some examples of how the dynamic type errors would appear using env-run:

> (env-run '(program(a b c) (+abzc)) '"(123))

*** ERROR -- | BEX exception prinmop-w ong-nunber-of-args: (expected 2 got 3
in(+1223))

:> (env-run '"(program(a b c) (+a (<b<c))) '(1223)

*** ERROR -- | BEX exception prinop-wong-arg-type: (expected int got #t in
(+ 1 #t))

> (env-run '(program(a b c d e f) (if (+ab) (+cd (* ef)))
(123 456))
*** ERROR -- | BEX exception non-boolean-if-test: 3

Y ou can test your dynamic type checking by evaluating the expressions

13

(test-dynam ¢ env-run)
(test-dynani ¢ subst-run)

These will run the interpreters on test suites containing various type errors, and will compare the
results of your interpreter to the expected results.

Notes:

» For catching the wrong number of arguments error or the wrong type of argument error,
you need to know the expected number and types of the arguments to each primop. This
information is already available in the primop descriptor associated with each primop in
primop-env. See Appendix B for details. For instance:

> (pdesc-numargs (env-lookup '+ prinop-env))
2

> (pdesc-arg-types (env-lookup '+ prinmop-env))
(int int)

> (pdesc-result-type (env-lookup '+ prinop-env))
i nt

> (pdesc-numargs (env-lookup 'not prinop-env))
> (pdesc-arg-types (env-1lookup 'not prinop-env))
(bool)

> (pdesc-result-type (env-1ookup 'not prinop-env))
bool

> (pdesc-numargs (env-lookup '< prinop-env))
2

> (pdesc-arg-types (env-lookup '< prinmop-env))
(int int)

> (pdesc-result-type (env-lookup '< prinop-env))
bool

» Thetypeerrorsfor scand andscor do not have to be handled specially, because they will
desugar to type errorsin the corresponding if expression.

» Thefollowing function (already defined int ype- check. scm) isahandy way to test if a
given value has a given type.

(define type-error?
(lanmbda (type val)

(not (eq? type (type-of val)))))

» Another kind of error is an unknown primitive function name. But it turns out that this
error is caught in the desugarer rather than the evaluators.

> (env-run '(program(a b) (/ a b)) '"(1 2))
*** ERROR -- | BEX exception desugar-unknown-expression: (/ a b)

14

Part 6 [50]: Static Type Checkingin IBEX

A disadvantage of dynamic type-checking isthat type errors are not caught until the programis
run on actual arguments. Y et, without knowing the actual arguments, we can often deduce that a
program will have atype error. Finding type errorsin program without running them on actual
argumentsis called static type checking.

Let’sassume that al actual arguments to a program must be integers. Then we can reason that
the program (program (a b ¢) (+ a (< b c))) hasatypeerror asfollows:

» Sinceb and c areints, (< bc)isabool.
» Sinceaisanint, (+ a(<bc)) will attempt to add an int to abool, which isatype error.

The process of type checking in IBEX can be performed in a manner similar to evaluation viathe
environment model interpreter. In analogy with env- eval , we can write afunction t ype- eval
that takes two arguments: (1) an expression to be type-checked and (2) an environment that binds
names to types (rather than to values). If the expression iswell-typed in the given environment
(i.e., has no static type errors), thet ype- eval function will return the type of the given
expression (i.e., the symbol i nt or the symbol bool). But if the expression contains a static type
error, t ype- eval will throw an exception indicating the kind of type error encountered.

Usingt ype- eval , itiseasy to write afunction (t ype- check program) that returns the type of
the value computed by a program, assuming that all of its parameters are integers.

The kinds of static type errorsincludes the three dynamic type errors from Problem 5, plus two
additional ones:

Kind of TypeError Symboalic Tag I nfor mation Value
Number of actud (expect ed expected-num
arguments does not pri mop- wr ong- nunber - of - ar gs got actual-num
match expected number i n offending-primapp)
of arguments.

The type of an actual (expect ed expected-type

argument does not match pri mop-wr ong- ar g- t ype got actual-type

the expected type of the i n offending-primapp)

argument.

Anif expression hasa non- bool ean-i f -t est The offending test expression.

non-boolean test.

The types of the two i f-branch-m snmatch (then: then-expression

branches of an if has-type then-type

expression do not match el se: else-expression
has-type else-type)

Unbound variable error unbound- vari abl e The name of the unbound

variable.

Notethat it is considered a static type error for the two branches of an if to have different types
even though an expression with such an “error” may not generate a dynamic type error. For
example, (+ 1 (if (< 12) (+ 3 4) (<5 6))) hasadatic type error but not adynamic
type error. In order to catch errors without running the program, we often have to add additional
restrictions to our language that prohibit programs that would not give errors at run-time. In
return, we get a guarantee that any program without a static type error will not generate a
dynamic type error when it is executed.

For this problem, you are to flesh out the definitions of t ype- check and t ype- eval within the
file type-check.scm You should carefully study env-run, env-eval , andpri mappl y before
attempting this problem.

15

Y ou can test your type-checker by evaluating the expression
(test-checker type-check)

which will run your type checker on a suite of sample programs (both with and without type
errors).

16

Appendix A: IBEX Specification

The IBEX language is an extension to BINDEX that supports both Integer and Boolean
EXpressions (hence, “IBEX”). Every BINDEX program isalso alegal IBEX program. But
additionally, IBEX supports the following features:

Boolean literals:: In addition to integer literal values, IBEX supports the boolean literal
values true (written #t , asin Scheme) and false (written #f , asin Scheme).

Relational binary operators: In addition to the arithmetic binary operators (+, - , * , di v,
nod), IBEX supports the relational binary operators <, <=, =, >=, >, and! = (not equal).
These expect two integer operands and return a boolean result. E.g. :

(< 3 2) evaluatesto #f (<= 3 2) evaluatesto #f
(< 3 3) evaluatesto #f (<= 3 3) evaluatesto #t
(< 3 4) evaluatesto #t (<= 3 4) evaluatesto #t

3 2) evaluatesto #f 3 2) evaluatesto #t

3) evaluatesto #t
3 4) evauatesto #f

3 3) evaluatesto #f
3 4) evaluatesto #t

—~ A~~~
Inmn
w

—~ A~~~

(> 3 2) evaluatesto #t
(> 3 3) evaluatesto #f
(> 3 4) evaluatesto #f

3 2) evaluatesto #t
3 3) evaluatesto #t
3 4) evaluatesto #f

—~ A~~~
V}{V

If one of the arguments of an arithmetic or relational operator is a boolean instead of an
integer, a“runtime type error” is generated. Such an error means that an attempt is being
made to use one type of value in a context where another kind is expected.

Logical binary operators: : IBEX supports boolean conjunction (written band) and boolean
disiunction (written bor) binary operators. These expect two boolean operands and return a
boolean result.

(band (< 1 2) (< 3 4)) evaluatesto#t (bor (< 1 2) (< 3 4)) evaluatesto #t
(band (< 2 1) (< 3 4)) evaluatesto#f (bor (< 2 1) (< 3 4)) evaluatesto #t
(band (< 1 2) (< 4 3)) evaluatesto#f (bor (< 1 2) (< 4 3)) evaluatesto #t
(band (< 2 1) (< 4 3)) evaluatesto#f (bor (< 2 1) (< 4 3)) evaluatesto #f

These are not “short-circuit” operators — both operands are always evaluated. For example:

(band (< (div 1 0) 2) (< 3 4)) raisesanerror
(band (< (div 1 0) 2) (> 3 4)) raisesanerror
(band (< 3 4) (< (div 1 0) 2)) raisesan error
(band (> 3 4) (< (div 1 0) 2)) raisesan error

(bor (< (div 1 0) 2) (< 3 4)) raisesanerror
(bor (< (div 1 0) 2) (> 3 4)) raisesanerror
(bor (< 3 4) (< (div 1 0) 2)) raisesan error
(bor (> 3 4) (< (div 1 0) 2)) raisesan error

An attempt to use an integer in alogical operation generates a runtime type error. E.g. ,
(band #t 3) and (bor 7 #f) generate such errors.

17

Logical unary operator: : IBEX supportsalogical unary not operator:

(not (< 2 3)) evaluatesto #f
(not (< 3 2)) evaluatesto #t
(not 3) generates aruntime type error

Conditional expressions. IBEX supports a conditional expression with the same asin
Scheme: (i f test-exp then-exp else-exp).Asin Scheme, test-exp isfirst evaluated,
if itistrue, the result of evaluating then-exp isreturned, and if it isfalse, the result of
evaluating else-exp isreturned. In either case, exactly one of then-exp and else-exp are
evaluated.

(if (<12 (+34) (*56)) evauatesto7
(if (<12 (+34) (div1o0)) evauatesto7
(if (<21) (+34) (*56)) evauatesto 30
(if (<21) (div10) (*56)) evauatesto 30
(+ (if (<12) (+34) (*586))
(if (<87) (*910) (+ 11 12))) evauatesto 30

The value returned by an if may be either an integer or a boolean:

(if (<12 (<3 4) (<6 5)) evauatesto #t
(if (<12 (<43) (<5 6)) evauatesto#f
(if (>12) (<3 4) (<6 5)) evauatesto#f
(if (>12) (<4 3) (<5 6)) evauatesto #t
(if (<12 (+34) (<5 6)) evauatesto#7
(if (>12) (+34) (<5 6)) evauatesto #t

Unlike in Scheme, IBEX requires that the test-exp position evaluates to a boolean. (In
contrast, Scheme treats any non-false value as true.)

(if (- 12) (+34) (<5 6)) generatesaruntime type error

Short-circuit boolean constructs: IBEX supports “short-circuit” boolean conjunction
(written scand) and boolean digunction (writtenscor). These are similar to the logical
binary operators band and bor , except that scand does not evaluate its second argument if its
firstisfase, and scor does not evaluate its second argument if itsfirst istrue.

(scand (< 1 2) (< 3 4)) evaluatesto#t (scor (< 1 2) (< 3 4)) evauatesto #t
(scand (< 2 1) (< 3 4)) evaluatesto#f (scor (< 2 1) (< 3 4)) evauatesto #t
(scand (< 1 2) (< 4 3)) evaluatesto#f (scor (< 1 2) (< 4 3)) evauatesto #t
(scand (< 2 1) (< 4 3)) evaluatesto#f (scor (< 2 1) (< 4 3)) evauatesto #f
(scand (< (div 1 0) 2) (< 3 4)) raisesan error
(scand (< (div 1 0) 2) (> 3 4)) raisesan error
(scand (< 3 4) (< (div 1 0) 2)) raisesaneror
(scand (> 3 4) (< (div 1 0) 2)) evauatesto #

(scor (< (div 1 0) 2) (< 3 4)) raisesanerror
(scor (< (div 1 0) 2) (> 3 4)) raisesanerror
(scor (< 3 4) (< (div 1 0) 2)) evauatesto #t
(scor (>3 4) (< (div 1 0) 2)) raisesanerror

18

Appendix B: Changesto the BINDEX implementation to support IBEX

To implement the features of IBEX, you will need to extend an implementation of BINDEX. In
order to simplify the implementation of IBEX, afew changes have been made to the
implementation of BINDEX discussed in class.

Abstract Syntax

The abstract syntax for IBEX extends the abstract syntax for BINDEX. The BINDEX subset of
IBEX abstract syntax is the same as discussed in class except for two changes:

1) Literals: Themake-intlit,intlit-value,andintlit? have been replaced by make-
literal,literal-value,andliteral ? Inthe BINDEX subset of IBEX, literal still
means an integer, but in full IBEX literal means an integer or aboolean. This change alows
the same code for handling literalsin BINDEX to correctly handle them in IBEX. Inthe S
expression concrete syntax for IBEX, boolean literals are written asin Scheme (#t and #f).
Use the Scheme proceduresi nt eger ? and bool ean? to test if aliteral isan integer or
boolean.

2) Primitive Applications: Although BINDEX supports only binary operators, IBEX supports
aunary operator (not) aswell. It iseasy to imagine extending IBEX with other unary
operators, as well as operators that have more than two operands. Rather than having separate
abstract syntax for unary operator applications and binary operator applications, these have
been combined into amore general primitive application form, which abstractly has two
parts: (1) arator, which is the name of the primitive operator (primop” for short) and (2) the
rands, which is the list of operand expressions for application. These are supported by the
following abstract syntax functions:

(make- primapp rator rands) _ _
Returns a primitive application node. rator should be a symbol denoting a primop.
rands should be alist of expressions denoting the operands of the primitive application.

(primapp-rator primapp) Returnstherator of aprimapp
(pri mapp-rands primapp) Returnsthe rands of aprimapp
(primapp? exp) Returnstrueif expisaprimitive application node, otherwise false.

In the S-expression abstract syntax, the operand list is spliced into the parenthesized
primitive application node —i.e., there is not an extra set of parentheses around the list of
operands. For example, the primitive application (- (+ 1 2) (* 3 4)) has- asitsrator
andalistof (+ 1 2) and(* 3 4) asitsrands. The primitive application (not (= 3 4))
hasnot asitsrator and asingleton list containing (= 3 4) asitsrands.

The abstract syntax for IBEX also includes the following operations for constructing,
deconstructing, and testing for the conditional constructs (i f , scand, scor):

(rmake-if test then-part el se-part)
(if-test if-exp)
(if-then if-exp)
(if-else if-exp)

(i f? exp)

(make-scand randl rand2) (make-scor randl rand2)
(scand-randl scand-exp) (scor-randl scand- exp)
(scand-rand2 scand-exp) (scor-rand2 scand- exp)
(scand? exp) (scand? exp)

19

Environments

The environments used in IBEX are similar to those used in BINDEX. In particular, IBEX
environment include the following operations discussed in class:

(env-enpty) _
Returns the empty environment.

(env-bind key value env) o) o

Returns a new environment that has a binding between key andvalue in additionto all the
bindings of env. The binding betweenkey and value overrides any existing binding for
key inenv.

(env-1 ookup key env) .) . o .
Returns the value bound to key inenv, or aspecial unbound token if no such binding exists.

A difference between the env-lookup defined above and the one defined in class is that the one
define above returns a distinguished “unbound” token (that is different from false) to indicate
that akey isnot bound in the environment. The unbound token is the only Scheme value for
which the following predicate returns true:

(unbound? val ue) o _
Returns true if value is the distinguished unbound token and fal se otherwise.

In IBEX, it is necessary to distinguish the unbound token from the fal se value because the false
value may be bound to a name in an environment. With this change, the variable reference clause
of env-eval becomes:

((varref? exp)
(let ((probe (env-1ookup (varref-nane exp) env)))
(if (unbound? probe)
(error "ENV-EVAL: Unbound variable -- "
(list "exp = exp 'env= env))
probe)))

Additionally, there are more operations in the environment contract than discussed in class. See
Appendix C for details.

Sets

The set operations are those presented in class, except for one addition: uni on- map, which
unions together the sets that result from mapping a set-producing function over the elements of a
list:

(define uni on-map
(lambda (f Ist)
(foldr set-union
(set-enpty)
(map f Ist))))

20

Exception Handling

When a BINDEX interpreter encountered an error, it used Scheme’ serr or construct to halt the
computation and print a message indicating the problem. When it come to testing an interpreter
on asuite of test programs, however, we don’t want the interpreter to halt when it encounters an
error. Rather, we would like to be able to observe the error, but proceed to evaluate other
programs in the test suite.

In order to get this behavior, we need some sort of exception handling mechanism, like Java's
throwandtry. Recall that Java programs can uset hr owto “throw” an exception valuethat is
“caught” by the nearest dynamically enclosing instance of t ry. Any pending computation
between the point of the throw and the point of thetry is aborted. (If you don’t understand this,
don’t worry - we will study exception handling in more detail later in the semester.)

Although such an exception handling mechanism is not a part of standard Scheme, it is easy to
implement one (in less than a page of code!). The mechanism uses the following t hr owand
cat ch constructs:

(throw tag info)

Throw an exception with tag tag and information value info to the nearest dynamically
enclosing cat ch, whereit will be handled. All pending computation between the point of the
throw and the point of the cat ch isaborted. It is assumed that the entire program is wrapped
in a default exception handler that prints out the tag and info.

(catch thunk handler)

Assume that thunk isazero-parameter procedure and handler is atwo-argument procedure.
Establish an exception handler handler that isin effect during the computation generated by
applying thunk to zero arguments. If the computation does not throw any exceptions, then
cat ch returns with the value of the computation. But if the computation throws an exception,
cat ch returns the result of applying handler to the tag and info of the exception.

As an example, consider the following function and sample invocations:

(define catch-test
(1 ambda (x)
(catch (Il anmbda ()
(* (+ (if (even? x)

(throw 'even x)
X)

1)

(- (if (<x 0)

(throw 'negative x)
X)

1)) |

(lanmbda (tag value) (list tag value)))))

> (catch-test 3)
8 ;=(+(+31 (31D

> (catch-test 4)
(even 4)

> (catch-test -3)
(negative -3)

In the IBEX interpreter, you should always uset hr ow rather than Scheme’ ser r or to indicate an
error. The part of IBEX that tests suites of sample programs depends on this. Note: you should
only haveto put t hr owin your programs; you should not write any instances of cat ch.

21

Primitive Operators

During evaluation, aprimitive application “works’ only if the length of the rands list isthe
expected number of operands for the operator, and the types of the actual operands matches the
types expected by the primitive operator. To keep track of this sort of information, we will create
a primop descriptor (pdesc for short) for each primop that contains the following:

» The name of the primop.

» A list of the argument types expected by the primop. We will use the symbol int to
represent the integer type and the symbol bool to represent the boolean type. The length
of thislist isthe number of arguments of the primop.

» Theresult type of the primop.
» The Scheme function that computes the result of the primop for inputs of the right type.

The contract for to primop descriptorsis as follows:

(make- pdesc name arg-types result-type scheme-function)
Returns a descriptor with the given information.

(pdesc- num ar gs descriptor))
Returns the number of arguments expected by the primop.

The following return the named component of the descriptor:
(pdesc- nanme descriptor)

(pdesc-arg-types descriptor)

(pdesc-resul t-type descriptor)

(pdesc-functi on descriptor)

For example, the descriptor for the addition primop can be created as follows:
(make-pdesc “+ ‘(int int) ‘“int +)

To help with the creation of binary arithmetic primops, we define the following auxiliary
function:

(define nmake-binary-arithop
(1 anbda (nane function)
(make-pdesc nanme '(int int) 'int function)))

We can collect all the primitive descriptors for alanguage into a primop environment that
associates each primop name with its descriptor. For instance, below is the primop environment
for BINDEX. This environment can easily be extended to add new primitive operationsinto a
language. In this assignment you will see how to add relational and logical operators, but it
would be straightforward to add operations for characters, strings, lists, arrays, etc.

(define prinop-env
(bi ndi ngs- >env
(list
Bl NDEX pri nmops

(make-bi nding '+ (nmake-binary-arithop '+ +))
(make-binding '- (make-binary-arithop '- -))
(make-binding '* (nake-binary-arithop '* *))
(rmake-bi nding 'div (make-binary-arithop 'div quotient))
(rmake-bi ndi ng ' nod (make-bi nary-arithop 'nod renai nder))

)))

22

The key use of the primop environment is to define what it means to apply a primop to alist of
values. Hereisapri mappl y fuction that extends the functionality of thebi nop-t o- f uncti on
operator we studied in the context of BINDEX evaluation:

(define prinmapply
(1 anbda (prinop-name args)
(let ((pdesc (env-Ilookup prinop-name prinmop-env)))
(if (unbound? pdesc)
(error "PRI MAPPLY: Unknown primop -- " prinop-nane))
(apply (pdesc-function pdesc) args)))))

For example, (primapply ‘+ ‘(2 3)) yields5. Thepri mappl y function works for primops of
any number of arguments, where the arguments can be of any type. It isimplemented in terms of
Scheme’s primitive appl y function, which applies a primitive to alist of values. The pri mappl y
function is used to define the pri mapp clausein subst - eval and env-eval :

- PRI MAPPLY cl ause within SUBST- EVAL
((primapp? exp)
(primapply (prinapp-rator exp)
(map subst-eval (primapp-rands exp))))

- PR_I MAPPLY cl ause wi t hi n ENV- EVAL
((primapp? exp)
(primapply (prinmapp-rator exp)
(map (lanmbda (rand) (env-eval rand env))

(pri mapp-rands exp))))

23

Appendix C: Environment Contract

An environment is an immutable table-like data structure that maintains associations between
keys and values. Several of the operations mention an explicit binding datatype, defined by the
following contract:

(make- bi ndi ng key value) Returnsabinding between key and value.
(bi ndi ng- key binding) Returnsthekey of binding.
(bi ndi ng-val ue binding) Returnsthevalue of binding.

Thereis also a distinguished unbound value used to indicate failure in env- | ookup.

(unbound? value) o)
Returns true if value is the distinguished unbound token and fal se otherwise.

Here are the operations on environments:

(bi ndi ngs->env bindings)) .
Returns the environment made from the given list of bindings.

(env-bind key value env) o) .

Returns a new environment that has a binding between key andvalue in additionto all the
bindings of env. The binding betweenkey and value overrides any existing binding for
key inenv.

(env->bi ndi ngs env)

Return alist of the bindings env. The resulting list should have at most one binding for any
key The order of the names does not matter, but should be the for different callsto env-
bindings on the same environment

(env-enpty) _
Returns the empty environment.

(env-extend keys values env) . o
Returns a new environment with bindings between keys and values in addition to al the
bindings of env. These bindings override any existing bindings for keys in env.

(env-1 ookup key env) _) _ o _
Returns the value bound to key inenv, or aspecial unbound token if no such binding exists.

(env-keep keys env) o o))
Returns an environment containing only the bindings of env whose keys arein the list keys.

(env-make keys values) o)
Returns an environment containing bindings between the keys of the list keys and the
corresponding values of thelist values.

(env-nerge envl env2)
Returns a new environment that includes all the bindings of env1 and all the bindings of
env2. When akey is bound in both, the binding in env1 takes precedence.

(env-renove keys env) o o .]
Returns an environment containing only the bindings of env whose keys are not in the list
keys.

24

Problem Set Header Page:
Please make this the first page of your submission.

CS251 Problem Set 3
Due Saturday, March 11, 2000

Name:

Date & Time Submitted (only if late):

Collaborators (anyone you collaborated with in the process of doing the problem set):

In the Time column, please estimate the time you spent on the parts of this
problem set. Please try to be as accurate as possible; thisinformation will help
me to design future problem sets. | will fill out the Score column when grading
your problem set.

Part Time Score

General Reading

Problem 1 [25]

Problem 2 [20]

Problem 3[25]

Problem 4a[10]

Problem 4b [15]

Problem 4c [15]

Problem 4d [10]

Problem 5[30]

Problem 6 [50]

Total [200]

25

