
1

Wellesley College ◊ CS251 Programming Languages ◊ Spring, 2000

PROBLEM SET 3
Due Wednesday, March 8, 2000

Problem 0: Studying BINDEX

All of the problems on this problem set involve the BINDEX language discussed in class or
extensions to this language. Before attempting the problems, you should study the code for the
implementation of the BINDEX language, which can be found in the following directory on
Nike:

/usr/users/cs251/download/bindex

Although there is nothing to turn in for this problem, the rest of the problems will be
significantly easier once you understand how BINDEX works.

I have not yet implemented a parser for BINDEX, so the implementation cannot handle the non-
S-expression concrete syntax for BINDEX that I have been using in class. Instead, you should
use the fully parenthesized prefix S-expression concrete syntax indicated by the following
examples:

Non-S-Expression Concrete Syntax S-Expression Concrete Syntax
program (a, b) =
 bind c as +(a,b)
 in div(c,2)

(program (a b)
 (bind c (+ a b)
 (div c 2)))

program (a, b, c) =
 *(bind d as *(a,c)
 in bind e as –(d,b)
 in div(*(b,d), +(e,a)),
 bind e as bind b as *(12,a)
 in –(b,c)
 in div(e,b)

)

(program (a b c)
 (* (bind d (* a c)
 (bind e (– d b)
 (div (* b d) (+ e a))))
 (bind e (bind b (* 12 a)
 (- b c))
 (div e b))))

An advantage of the S-expression concrete syntax is that it can be given directly as input to
Scheme functions when quoted. For example:

;; Run the averaging program on the inputs 3 and 8
> (env-run ‘(program (a b)
 (bind c (+ a b)
 (div c 2)))
 ‘(3 8))
5

In this representation, since they are just S-expressions, BINDEX programs can be named so that
they are easily reusable:

> (define avg
 ‘(program (a b)

 (bind c (+ a b)
 (div c 2))))

> (env-run avg ‘(3 8))
5

2

> (env-run avg ‘(20 10))
15

Of course, when manipulating such programs you should only use the abstract syntax operators!
For example:

> (program-params avg)
(a b c)

> (bind? (program-body avg))
#t

> (bind-name (program-body avg))
c

Do not use any “raw” Scheme list operations to manipulate BINDEX programs! That is, you
should not use car and cdr to access the components of a node, nor should you use cons, list,
append, etc. to create nodes. (But you may use these operations to manipulate lists of formal
parameters, lists of binding names and definitions, etc.)

It is recommended that you get a sense for how BINDEX works by experimenting with the
BINDEX system. To load the BINDEX system, evaluate the following expressions in MIT-
Scheme:

(cd “/usr/users/cs251/download/bindex”) ; Connect to BINDEX directory
(load “load-bindex.scm”)
(cd “~”) ; Return to your home directory

You can use subst-run to run the substitution model interpreter, and env-run to run the
evaluation model interpreter. E.g.:

;; Using the avg program defined above
> (subst-run avg ‘(3 8))
5

;; Using the avg program defined above
> (env-run avg ‘(3 8))
5

When using subst-run it is helpful to trace the subst and subst-eval functions to get a sense
for how computation proceeds. For example:

> (trace subst-eval)
subst-eval

> (trace subst)
subst

> (subst-run avg '(3 8))
Entry (subst 8 'b '(bind c (+ a b) (div c 2)))
|Entry (subst 8 'b '(+ a b))
| Entry (subst 8 'b 'a)
| ==> a
| Entry (subst 8 'b 'b)
| ==> 8
|==> (+ a 8)
|Entry (subst 8 'b '(div c 2))
| Entry (subst 8 'b 'c)
| ==> c
| Entry (subst 8 'b 2)

3

| ==> 2
|==> (div c 2)
==> (bind c (+ a 8) (div c 2))
Entry (subst 3 'a '(bind c (+ a 8) (div c 2)))
|Entry (subst 3 'a '(+ a 8))
| Entry (subst 3 'a 'a)
| ==> 3
| Entry (subst 3 'a 8)
| ==> 8
|==> (+ 3 8)
|Entry (subst 3 'a '(div c 2))
| Entry (subst 3 'a 'c)
| ==> c
| Entry (subst 3 'a 2)
| ==> 2
|==> (div c 2)
==> (bind c (+ 3 8) (div c 2))
Entry (subst-eval '(bind c (+ 3 8) (div c 2)))
|Entry (subst-eval '(+ 3 8))
| Entry (subst-eval 3)
| ==> 3
| Entry (subst-eval 8)
| ==> 8
|==> 11
|Entry (subst 11 'c '(div c 2))
| Entry (subst 11 'c 'c)
| ==> 11
| Entry (subst 11 'c 2)
| ==> 2
|==> (div 11 2)
|Entry (subst-eval '(div 11 2))
| Entry (subst-eval 11)
| ==> 11
| Entry (subst-eval 2)
| ==> 2
|==> 5
==> 5
5

Simlarly, when using eval-run it is helpful to trace the env-eval function to get a sense for
how computation proceeds. For example:

> (trace env-eval)
env-eval

> (env-run avg '(3 8))
Entry (env-eval '(bind c (+ a b) (div c 2)) '((a 3) (b 8)))
|Entry (env-eval '(+ a b) '((a 3) (b 8)))
| Entry (env-eval 'a '((a 3) (b 8)))
| ==> 3
| Entry (env-eval 'b '((a 3) (b 8)))
| ==> 8
|==> 11
|Entry (env-eval '(div c 2) '((c 11) (a 3) (b 8)))
| Entry (env-eval 'c '((c 11) (a 3) (b 8)))
| ==> 11
| Entry (env-eval 2 '((c 11) (a 3) (b 8)))
| ==> 2
|==> 5
==> 5
5

4

The file bindex-examples.scm contains a few simple programs to experiment with, but you are
encouraged to write some of your own as well. The bindex-examples.scm file also contains an
implementation of a simple test suite that will test an evaluator on a list of programs and
examples and compare the results to the expected results. The variable test-suite contains the
test cases; it is initially defined to be as follows:

(define test-suite
 (list
 (list 'inc inc '(3) 4)
 (list 'c2f c2f '(100) 212)
 (list 'c2f c2f '(0) 32)
 (list 'c2f c2f '(-40) -40)
 (list 'calc calc '(20) 10)
 (list 'calc calc '(31) 15)
 (list 'avg avg '(3 8) 5)
 (list 'avg avg '(20 10) 15)
 (list 'test-bindseq test-bindseq '(3) 63)
 (list 'test-bindpar test-bindpar '(3) 37)
 (list 'test-bindseq2 test-bindseq2 '(3) 6)
 (list 'test-bindpar2 test-bindpar2 '(3) 149)
 (list 'test-ast test-ast '(5 4 2) 42)
))

You are encourage to add new programs and test cases to your own local copy of bindex-
examples.scm.

The test function is used to test a program evaluator (such as subst-run or env-run) on the
test cases in test-suite. For example:

> (test subst-run)

Running inc on (3) gives 4. OK!
Running c2f on (100) gives 212. OK!
Running c2f on (0) gives 32. OK!
Running c2f on (-40) gives -40. OK!
Running calc on (20) gives 10. OK!
Running calc on (31) gives 15. OK!
Running avg on (3 8) gives 5. OK!
Running avg on (20 10) gives 15. OK!
Running test-bindseq on (3) gives 63. OK!
Running test-bindpar on (3) gives 37. OK!
Running test-bindseq2 on (3) gives 6. OK!
Running test-bindpar2 on (3) gives 149. OK!
Running test-ast on (5 4 2) gives 42. OK!
Done.
#f

The test function complains if the actual result does not match the expected result specified in
test-suite. For instance, if we change the line

(list 'avg avg '(3 8) 5)

in test-suite to instead be the (incorrect) line

(list 'avg avg '(3 8) 6)

then running (test subst-run) would indicate what it thinks is an error as follows:

Running avg on (3 8) gives 5 ***ERROR!*** Expected 6

5

Problem 1 [25]: Abstract Syntax Trees

Consider the following BINDEX averaging program:

(program (a b)
 (bind c (+ a b)
 (div c 2)))

Here is the abstract syntax tree (AST) for this program:

Note that the multiple parameters of the program are shown branching off a single solid node
that stands for the sequenence of parameters.

Suppose we annotate each node of the abstract syntax tree with the following three pieces of
information:

Ø The free variables of the program or expression rooted at the node.
Ø The environment in which the node would be evaluated if the program were run on the

actual parameters a = 3 and b = 8. (Write environments as sets of bindings of the form
key = value.)

Ø The value that would result from evaluating the node in the environment from (2).

The following picture shows the AST for the averaging program annotated with this information:

6

In this problem, you are to draw a similar annotated AST for the following BINDEX program:

(program (a b c) =
 (* (bind d as (* a c)
 (bind e as (– d b)
 (div (* b d) (+ e a))))
 (bind e (bind b (* 12 a)
 (- b c))
 (div e b))))

You should annotate each node of the abstract syntax tree with the following three pieces of
information:

Ø The free variables of the program or expression rooted at the node.
Ø The environment in which the node would be evaluated if the program were run on the

actual parameters a = 5, b = 4, and c = 2. (Write environments as sets of bindings of the
form key = value.)

Ø The value that would result from evaluating the node in the environment from (2).

Note: for this problem, you will need to use a very large sheet of paper and/or to write very
small. It is strongly recommended that you write the solution using pencil (not pen) and paper.
Don’t waste your time attempting to format it on a computer with a drawing program.

7

Problem 2 [20]: Naming in BINDEX

Part a. Suppose that the following program is run on the argument 3. Indicate the value that
each name will be bound to during the execution, and also indicate the resulting value of the
program:

;; BINDSEQ test program
(program (x)
 (bind a (+ x 1)
 (bindseq ((a (* x a))
 (b (+ x a)))
 (bindseq ((a (- a b))
 (b (* a a)))
 (+ a b)))))

Part b. Redo part (a), except using a version of the program in which every bindseq has been
replaced by bindpar.

;; BINDPAR test program
(program (x)
 (bind a (+ x 1)
 (bindpar ((a (* x a))
 (b (+ x a)))
 (bindpar ((a (- a b))
 (b (* a a)))
 (+ a b)))))

Part c. Write the result of desugaring the programs from both part a and part b into BINDEX
programs that use only bind in place of bindseq and bindpar. (You should perform the
desugaring by hand and not use Scheme to do it for you!)

Part d. In the subst function within the file subst.scm, the case for bind expression is as
follows:

((bind? exp)
 (make-bind (bind-name exp)
 (subst int name (bind-defn exp))
 (if (eq? name (bind-name exp))
 ;; Careful! Don't substitute in this case
 (bind-body exp)
 (subst int name (bind-body exp)))))

Explain why there is a special case to handle the situation where the bound variable of a bind
expression is the same as the name being substituted away by the subst function. Use
example(s) to illustrate what would go wrong if this case was not handled specially.

8

Problem 3 [25]: bind*

Suppose that BINDEX is extended with a new binding construct bind* that has the same syntax
as bindpar and bindseq except that it uses the keyword bind* in place of bindpar and
bindseq. Consider the following program using bind*:

(program (a b c)
 (bind* ((a (+ (* 10 b) c))
 (b (+ (* 10 a) c))
 (c (+ (* 10 a) b)))
 (+ a (+ b c))))

Of course, the result of the above program will depend on the semantics given to the bind*
construct. Here is a skeleton of the definition of env-eval extended with a clause for bind*:

(define env-eval
 (lambda (exp env)
 (cond . . .
 ((bind*? exp)
 (env-eval (bind*-body exp)
 (fold2 (lambda (name defn e)
 (env-bind name
 (env-eval defn env1)
 env2))
 env
 (bind*-names exp)

 (bind*-defns exp))))
 . . .)))

The meaning of the bind* construct depends on whether fold2 is foldl2 or foldr2, whether
env1 is env or e, and whether env2 is env or e. For each of the following combinations, indicate
the result of the above program on the input values ‘(1 2 3). Show your work for partial credit.

fold2 env1 env2

foldl2 e e

foldl2 e env

foldl2 env e

foldl2 env env

foldr2 e e

foldr2 e env

foldr2 env e

foldr2 env env

9

Problem 4 [50]: IBEX Evaluation

In this problem you will extend the BINDEX language to support boolean values and various
constructs that manipulate boolean values. The resulting language is called IBEX, for Integer and
Boolean Expression language. Before continuing with this problem, you should read the
description of IBEX in Appendix A.

The implementation of BINDEX has been changed in a few ways to better support the
implementation of IBEX. These changes are summarized in Appendix B, which you should also
read before attempting this problem.

The code you will extend for this problem can be found in the ibex directory within the CS251
download directory. You should copy the files from this directory to your own local directory,
where you will be changing them. To load the IBEX system, you should load the load-
ibex.scm file by executing (load “load-ibex.scm”) in MIT-Scheme. (You may need to use cd to
first change the directory to the directory containing your local copy of the ibex directory.)

For this problem, you should turn in your final copies of the following files, all of which you will
modify as part of this problem.

desugar.scm env-eval.scm free-vars.scm primops.scm
rename.scm subst-eval.scm subst.scm

Part 4a [10]: Implementing IBEX Primops

You should begin by implementing the new IBEX primops, which consist of the relational
primops (<, <=, =, != , >=, >) and the logical primops (band, bor, not). See Appendix A for the
meaning of this primops, and Appendix B for details on how to add new primops.

All you need to do for this part is to extend the definition of primop-env in the file
primops.scm. You should test your changes by evaluating the expression

(test-primops env-run),

which will apply env-run to each program in a suite of test cases and compare the actual answer
to the expected answer. If the two match, you will see an OK! at the end of a line. If the expected
and actual answers for a test case do not match, you will see the string ***WRONG ANSWER!***
along with an explanation of the mismatch between the actual and expected answers.

Make sure you remember to re-evaluate the definition of primop-env every time you change it
before you test it. Or better yet, evaluate (load “load-ibex.scm”) before performing tests
after making a change.

To see more about the test programs in the test suite, see the file ibex-examples.scm. (Feel free
to extend the suites of test cases to include test cases of your own!) Each entry of test-suite is
a list of the following four elements:
Ø the name of the tested program.
Ø an expression evaluating to the S-expression for the program.
Ø A list of arguments on which to test the program.
Ø The expected value of applyin the program to the arguments.

For example, if avg is defined as in Problem 0, then here is a sample test case:

(list ‘avg avg ‘(3 8) 5)

When such a test case appears in the test suite, testing it will print the following:

10

Running avg on (3 8) gives 5. OK!

On the other hand, suppose the + primop was accidentally given the meaning of *. Then testing
the above test case would yield:

Running avg on (3 8) gives 12 ***WRONG ANSWER!*** Expected 5

Part 4b [15] Implementing if, scand, and scor in the Environment Model

The next task is to extend the environment model interpreter (as embodied in the env-eval
function in the file env-eval.scm) to handle the three constructs if, scand, and scor, as
described in Appendix A. You should add one clause for each of these constructs to the main
cond expression of env-eval.

You should test that these constructs work by evaluating the expression

(test-conditionals env-run-no-desugar)

This will evaluate a number of test cases involving if, scand, and scor. Your evaluation clauses
are probably correct if all the test cases end in OK!.

By the way, the env-run-no-desugar is a version of env-run that does not desugar (see Part
4c) the program body before evaluating it. The env-run function, which does desugar the
program body, will give errors if used in this context --- at least until the desugar function is
extended to handle if, scand, and scor in Problem 4c.

Part 4c [15]: Desugaring scand and scor

It would be possible to complete the IBEX implementation by adding three clauses (one for if,
one for scand, one for scor) to several other function definitions (e.g. subst, subst-eval,
free-vars, etc.) But a better approach is to observe that scand and scor can be “desugared”
into instances of if as follows:

(scand E1 E2) desugars to (if E1 E2 #f)
(scor E1 E2) desugars to (if E1 #t E2)

This means that any program with scand and scor can be desugared (i.e., rewritten) to a
program that replaces every occurrence of scand and scor by if. If every IBEX program is first
desugared before any further processing, then scand and scor do not have to be handled by any
functions other than the desugar function that implements the desugaring. This greatly
simplifies the rest of the language implementation, which only needs to handle the if construct.
This strategy is used in BINDEX to simplify the handling of bindseq and bindpar, both of
which can be desugared into bind.

In this part, you should implement the desugaring of scand and scor by:
Ø Adding clauses for if, scand, and scor to the desugar function in desugar.scm. The

desugar function takes a single expression and returns the desugared version of that
expression.

Ø Adding a clause for if to the free-vars function in free-vars.scm. The free-vars
function returns a set of the free variables in an expression. For this, you will need the set
operations described in class.

Ø Adding a clause for if to the rename function in rename.scm. The call
(rename old new exp) renames all free occurrence of the variable old to the variable
new in the expression exp. It may need to perform other renamings to prevent inadvertent
variable capture.

11

Note that it is necessary to modify free-vars and rename at the same time as desugar, because
the desugaring of bindpar depends on these functions. However, because both free-vars and
rename are guaranteed to be called only on desugared expressions, they only need a clause for if
(and not clauses for scand and scor).

After you make these changes, the bindseq, bindpar, scand, and scor clauses in env-eval will
no longer be used when calling env-run, because all instances of these constructs will have been
desugared away. However, these clauses will still be used when env-eval-no-desugar is
invoked.

You should test your modifications by evaluating the expression

(test-ibex env-run)

This will evaluate a number of test cases involving if, scand, and scor, where programs are
first desugared before evaluation. Your evaluation clauses are probably correct if all the test
cases end in OK!.

Part 4d: Implementing if in the Substitution Model

As the final step of implementing IBEX, extend the subst function in subst.scm and the
subst-eval function in subst-eval.scm to handle the if construct. Test your modification via

(test-ibex subst-run)

12

Problem 5 [30] Dynamic Type-Checking in IBEX

Informally, a type is a collection of values. We shall use the type int to stand for the collection
of all integer values and the type bool to stand for the collection whose elements are true and
false. The collections that these types stand for are disjoint, so no value can have more than one
of these types. Furthermore, since every IBEX value is either an integer or a boolean, it has
exactly one of these two types. So we can classify IBEX values by the following function:

(define type-of
 (lambda (val)
 (cond ((integer? val) 'int)
 ((boolean? val) 'bool)
 (else (throw 'type-of-unknown-value val))
)))

In the BINDEX language, every value was an integer and every primop was a binary operator
with two integer arguments and an integer result. Because of this uniformity, not a lot can go
wrong in the evaluation of a BINDEX expression. The only kind of errors we can encounter
when running a BINDEX program are:

Ø An unbound variable, such as y in (program (x) (+ x y))

Ø An attempt to divide a number by 0, as in (program (x) (div x 0)) or (program
(x) (mod x 0)).

But in IBEX, many additional kinds of problems can arise:

Ø A primop may get the wrong number of arguments – e.g., (band (< 1 2)),
(not (< 1 2) (< 3 4)), (+ 1 2 3).

Ø A primop may get one or more arguments that are the wrong type – e.g., (+ 1 #t),
(band #f 3), (not 3).

Ø An if expression may have a non-boolean test – e.g., (if 2 (+ 3 4) (* 5 6)).

Ø A scand or scor expression may have non-boolean rands. E.g. (scand #t 3),
(scor #f 5).

All of these new kinds of errors are called type errors.

A language is said to have dynamic type checking if all type errors encountered at run-time
(i.e., when the program is run) are reported. Scheme is an example of a language with dynamic
type checking. For instance, evaluating (+ 1 #t) in Scheme generates an error

*** ERROR -- NUMBER expected: (+ 1 #t)

And evaluating (not 2 3) in Scheme generates an error like:

*** ERROR -- Wrong number of arguments passed to procedure: (not 2 3)

But Scheme embodies a different notion of type errors than IBEX. For instance, in Scheme, the
addition procedure can have any number of arguments. So (+ 1 2 3) is sensible in Scheme, but
not in IBEX. As another difference, Scheme treats any non-false test value in an if expression as
true, so (if 2 (+ 3 4) (* 5 6)) evaluates to 7 in Scheme. However, in IBEX, this expression
should yield a type error. In Scheme, the or special form returns the first non-false value, so (or
1 2) returns 1. In contrast, the IBEX expression (scor 1 2) should generate a type error.

13

The implementations of the environment and substitution model interpreters from Problem 4
catch some type errors but not others. For instance, running the program (primop (x) (+ x
#t)) on the argument list ‘(1) will eventually attempt to apply the Scheme addition function to
the arguments 1 and #t; this will generate a Scheme type error, as noted above. But unless you
have been very careful in your implementation of Problem 4, it is likely that many IBEX
programs that should generate type errors do not. For example, the following IBEX programs
should all generate type errors --- do they in your implementation?

(env-run ’(program (a b c) (+ a b c)) ‘(1 2 3))

(env-run ‘(program (a b c d e f) (if (+ a b) (+ c d) (* e f)))
 ‘(1 2 3 4 5 6))

(env-run ‘(program (a b) (scor a b)) ‘(1 2))

The goal of this problem is to modify the environment and substitution model interpreters for
IBEX to report all dynamic type errors. To do this, you will need to modify the following three
functions (and potentially add some new auxiliary functions as well):

Ø primapply in primops.scm
Ø env-eval in env-eval.scm
Ø subst-eval in subst-eval.scm

Upon encountering a dynamic type error, you should use the throw construct (see Appendix B)
to generate an exception. (Do not use Scheme’s error construct!) The throw construct takes two
operands: a symbolic tag (i.e., a symbol) indicating the kind of exception, and an information
value given more details about the particular exception. For IBEX dynamic type errors, you
should use the following symbolic tags and values:

Kind of Type Error Symbolic Tag Information Value
Number of actual
arguments does not
match expected number
of arguments.

primop-wrong-number-of-args
(expected expected-num
 got actual-num
 in offending-primapp)

The type of an actual
argument does not match
the expected type of the
argument.

primop-wrong-arg-type
(expected expected-type
 got actual-value
 in offending-primapp)

An if expression has a
non-boolean test.

non-boolean-if-test The offending test value

Here are some examples of how the dynamic type errors would appear using env-run:

> (env-run '(program (a b c) (+ a b c)) '(1 2 3))
*** ERROR -- IBEX exception primop-wrong-number-of-args: (expected 2 got 3
in (+ 1 2 3))

:> (env-run '(program (a b c) (+ a (< b c))) '(1 2 3))
*** ERROR -- IBEX exception primop-wrong-arg-type: (expected int got #t in
(+ 1 #t))

> (env-run '(program (a b c d e f) (if (+ a b) (+ c d) (* e f)))
 '(1 2 3 4 5 6))
*** ERROR -- IBEX exception non-boolean-if-test: 3

You can test your dynamic type checking by evaluating the expressions

14

(test-dynamic env-run)

(test-dynamic subst-run)

These will run the interpreters on test suites containing various type errors, and will compare the
results of your interpreter to the expected results.

Notes:

Ø For catching the wrong number of arguments error or the wrong type of argument error,
you need to know the expected number and types of the arguments to each primop. This
information is already available in the primop descriptor associated with each primop in
primop-env. See Appendix B for details. For instance:

> (pdesc-num-args (env-lookup '+ primop-env))
2

> (pdesc-arg-types (env-lookup '+ primop-env))
(int int)

> (pdesc-result-type (env-lookup '+ primop-env))
int

> (pdesc-num-args (env-lookup 'not primop-env))
1

> (pdesc-arg-types (env-lookup 'not primop-env))
(bool)

> (pdesc-result-type (env-lookup 'not primop-env))
bool

> (pdesc-num-args (env-lookup '< primop-env))
2

> (pdesc-arg-types (env-lookup '< primop-env))
(int int)

> (pdesc-result-type (env-lookup '< primop-env))
bool

Ø The type errors for scand and scor do not have to be handled specially, because they will
desugar to type errors in the corresponding if expression.

Ø The following function (already defined in type-check.scm) is a handy way to test if a
given value has a given type.

(define type-error?
 (lambda (type val)
 (not (eq? type (type-of val)))))

Ø Another kind of error is an unknown primitive function name. But it turns out that this
error is caught in the desugarer rather than the evaluators.

> (env-run '(program (a b) (/ a b)) '(1 2))
 *** ERROR -- IBEX exception desugar-unknown-expression: (/ a b)

15

Part 6 [50]: Static Type Checking in IBEX

A disadvantage of dynamic type-checking is that type errors are not caught until the program is
run on actual arguments. Yet, without knowing the actual arguments, we can often deduce that a
program will have a type error. Finding type errors in program without running them on actual
arguments is called static type checking.

Let’s assume that all actual arguments to a program must be integers. Then we can reason that
the program (program (a b c) (+ a (< b c))) has a type error as follows:

Ø Since b and c are ints, (< b c) is a bool.
Ø Since a is an int, (+ a (< b c)) will attempt to add an int to a bool, which is a type error.

The process of type checking in IBEX can be performed in a manner similar to evaluation via the
environment model interpreter. In analogy with env-eval, we can write a function type-eval
that takes two arguments: (1) an expression to be type-checked and (2) an environment that binds
names to types (rather than to values). If the expression is well-typed in the given environment
(i.e., has no static type errors), the type-eval function will return the type of the given
expression (i.e., the symbol int or the symbol bool). But if the expression contains a static type
error, type-eval will throw an exception indicating the kind of type error encountered.

Using type-eval, it is easy to write a function (type-check program) that returns the type of
the value computed by a program, assuming that all of its parameters are integers.

The kinds of static type errors includes the three dynamic type errors from Problem 5, plus two
additional ones:

Kind of Type Error Symbolic Tag Information Value
Number of actual
arguments does not
match expected number
of arguments.

primop-wrong-number-of-args
(expected expected-num
 got actual-num
 in offending-primapp)

The type of an actual
argument does not match
the expected type of the
argument.

primop-wrong-arg-type
(expected expected-type
 got actual-type
 in offending-primapp)

An if expression has a
non-boolean test.

non-boolean-if-test The offending test expression.

The types of the two
branches of an if
expression do not match

if-branch-mismatch (then: then-expression
 has-type then-type
 else: else-expression
 has-type else-type)

Unbound variable error unbound-variable The name of the unbound
variable.

Note that it is considered a static type error for the two branches of an if to have different types
even though an expression with such an “error” may not generate a dynamic type error. For
example, (+ 1 (if (< 1 2) (+ 3 4) (< 5 6))) has a static type error but not a dynamic
type error. In order to catch errors without running the program, we often have to add additional
restrictions to our language that prohibit programs that would not give errors at run-time. In
return, we get a guarantee that any program without a static type error will not generate a
dynamic type error when it is executed.

For this problem, you are to flesh out the definitions of type-check and type-eval within the
file type-check.scm. You should carefully study env-run, env-eval, and primapply before
attempting this problem.

16

You can test your type-checker by evaluating the expression

(test-checker type-check)

which will run your type checker on a suite of sample programs (both with and without type
errors).

17

Appendix A: IBEX Specification

The IBEX language is an extension to BINDEX that supports both Integer and Boolean
EXpressions (hence, “IBEX”). Every BINDEX program is also a legal IBEX program. But
additionally, IBEX supports the following features:

Boolean literals:: In addition to integer literal values, IBEX supports the boolean literal
values true (written #t, as in Scheme) and false (written #f, as in Scheme).

Relational binary operators: In addition to the arithmetic binary operators (+, - , * , div,
mod), IBEX supports the relational binary operators <, <=, =, >=, >, and != (not equal).
These expect two integer operands and return a boolean result. E.g. :

(< 3 2) evaluates to #f (<= 3 2) evaluates to #f
(< 3 3) evaluates to #f (<= 3 3) evaluates to #t
(< 3 4) evaluates to #t (<= 3 4) evaluates to #t

(= 3 2) evaluates to #f (!= 3 2) evaluates to #t
(= 3 3) evaluates to #t (!= 3 3) evaluates to #f
(= 3 4) evaluates to #f (!= 3 4) evaluates to #t

(> 3 2) evaluates to #t (>= 3 2) evaluates to #t
(> 3 3) evaluates to #f (>= 3 3) evaluates to #t
(> 3 4) evaluates to #f (>= 3 4) evaluates to #f

If one of the arguments of an arithmetic or relational operator is a boolean instead of an
integer, a “runtime type error” is generated. Such an error means that an attempt is being
made to use one type of value in a context where another kind is expected.

Logical binary operators: : IBEX supports boolean conjunction (written band) and boolean
disjunction (written bor) binary operators. These expect two boolean operands and return a
boolean result.

(band (< 1 2) (< 3 4)) evaluates to #t (bor (< 1 2) (< 3 4)) evaluates to #t
(band (< 2 1) (< 3 4)) evaluates to #f (bor (< 2 1) (< 3 4)) evaluates to #t
(band (< 1 2) (< 4 3)) evaluates to #f (bor (< 1 2) (< 4 3)) evaluates to #t
(band (< 2 1) (< 4 3)) evaluates to #f (bor (< 2 1) (< 4 3)) evaluates to #f

These are not “short-circuit” operators – both operands are always evaluated. For example:

(band (< (div 1 0) 2) (< 3 4)) raises an error
(band (< (div 1 0) 2) (> 3 4)) raises an error
(band (< 3 4) (< (div 1 0) 2)) raises an error
(band (> 3 4) (< (div 1 0) 2)) raises an error

(bor (< (div 1 0) 2) (< 3 4)) raises an error
(bor (< (div 1 0) 2) (> 3 4)) raises an error
(bor (< 3 4) (< (div 1 0) 2)) raises an error
(bor (> 3 4) (< (div 1 0) 2)) raises an error

An attempt to use an integer in a logical operation generates a runtime type error. E.g.,
(band #t 3) and (bor 7 #f) generate such errors.

18

Logical unary operator: : IBEX supports a logical unary not operator:

(not (< 2 3)) evaluates to #f
(not (< 3 2)) evaluates to #t
(not 3) generates a runtime type error

Conditional expressions: IBEX supports a conditional expression with the same as in
Scheme: (if test-exp then-exp else-exp). As in Scheme, test-exp is first evaluated;
if it is true, the result of evaluating then-exp is returned, and if it is false, the result of
evaluating else-exp is returned. In either case, exactly one of then-exp and else-exp are
evaluated.

(if (< 1 2) (+ 3 4) (* 5 6)) evaluates to 7
(if (< 1 2) (+ 3 4) (div 1 0)) evaluates to 7
(if (< 2 1) (+ 3 4) (* 5 6)) evaluates to 30
(if (< 2 1) (div 1 0) (* 5 6)) evaluates to 30
(+ (if (< 1 2) (+ 3 4) (* 5 6))
 (if (< 8 7) (* 9 10) (+ 11 12))) evaluates to 30

The value returned by an if may be either an integer or a boolean:

(if (< 1 2) (< 3 4) (< 6 5)) evaluates to #t
(if (< 1 2) (< 4 3) (< 5 6)) evaluates to #f
(if (> 1 2) (< 3 4) (< 6 5)) evaluates to #f
(if (> 1 2) (< 4 3) (< 5 6)) evaluates to #t

(if (< 1 2) (+ 3 4) (< 5 6)) evaluates to #7
(if (> 1 2) (+ 3 4) (< 5 6)) evaluates to #t

Unlike in Scheme, IBEX requires that the test-exp position evaluates to a boolean. (In
contrast, Scheme treats any non-false value as true.)

(if (- 1 2) (+ 3 4) (< 5 6)) generates a runtime type error

Short-circuit boolean constructs: IBEX supports “short-circuit” boolean conjunction
(written scand) and boolean disjunction (written scor). These are similar to the logical
binary operators band and bor, except that scand does not evaluate its second argument if its
first is false, and scor does not evaluate its second argument if its first is true.

(scand (< 1 2) (< 3 4)) evaluates to #t (scor (< 1 2) (< 3 4)) evaluates to #t
(scand (< 2 1) (< 3 4)) evaluates to #f (scor (< 2 1) (< 3 4)) evaluates to #t
(scand (< 1 2) (< 4 3)) evaluates to #f (scor (< 1 2) (< 4 3)) evaluates to #t
(scand (< 2 1) (< 4 3)) evaluates to #f (scor (< 2 1) (< 4 3)) evaluates to #f

(scand (< (div 1 0) 2) (< 3 4)) raises an error
(scand (< (div 1 0) 2) (> 3 4)) raises an error
(scand (< 3 4) (< (div 1 0) 2)) raises an error
(scand (> 3 4) (< (div 1 0) 2)) evaluates to #f

(scor (< (div 1 0) 2) (< 3 4)) raises an error
(scor (< (div 1 0) 2) (> 3 4)) raises an error
(scor (< 3 4) (< (div 1 0) 2)) evaluates to #t
(scor (> 3 4) (< (div 1 0) 2)) raises an error

19

Appendix B: Changes to the BINDEX implementation to support IBEX

To implement the features of IBEX, you will need to extend an implementation of BINDEX. In
order to simplify the implementation of IBEX, a few changes have been made to the
implementation of BINDEX discussed in class.

Abstract Syntax

The abstract syntax for IBEX extends the abstract syntax for BINDEX. The BINDEX subset of
IBEX abstract syntax is the same as discussed in class except for two changes:

1) Literals: The make-intlit, intlit-value, and intlit? have been replaced by make-
literal, literal-value, and literal? In the BINDEX subset of IBEX, literal still
means an integer, but in full IBEX literal means an integer or a boolean. This change allows
the same code for handling literals in BINDEX to correctly handle them in IBEX. In the S-
expression concrete syntax for IBEX, boolean literals are written as in Scheme (#t and #f).
Use the Scheme procedures integer? and boolean? to test if a literal is an integer or
boolean.

2) Primitive Applications: Although BINDEX supports only binary operators, IBEX supports
a unary operator (not) as well. It is easy to imagine extending IBEX with other unary
operators, as well as operators that have more than two operands. Rather than having separate
abstract syntax for unary operator applications and binary operator applications, these have
been combined into a more general primitive application form, which abstractly has two
parts: (1) a rator, which is the name of the primitive operator (“primop” for short) and (2) the
rands, which is the list of operand expressions for application. These are supported by the
following abstract syntax functions:

(make-primapp rator rands)
Returns a primitive application node. rator should be a symbol denoting a primop.
rands should be a list of expressions denoting the operands of the primitive application.

(primapp-rator primapp) Returns the rator of a primapp
(primapp-rands primapp) Returns the rands of a primapp
(primapp? exp) Returns true if exp is a primitive application node, otherwise false.

In the S-expression abstract syntax, the operand list is spliced into the parenthesized
primitive application node – i.e., there is not an extra set of parentheses around the list of
operands. For example, the primitive application (- (+ 1 2) (* 3 4)) has – as its rator
and a list of (+ 1 2) and (* 3 4) as its rands. The primitive application (not (= 3 4))
has not as its rator and a singleton list containing (= 3 4) as its rands.

The abstract syntax for IBEX also includes the following operations for constructing,
deconstructing, and testing for the conditional constructs (if, scand, scor):

(make-if test then-part else-part)
(if-test if-exp)
(if-then if-exp)
(if-else if-exp)
(if? exp)

(make-scand rand1 rand2) (make-scor rand1 rand2)
(scand-rand1 scand-exp) (scor-rand1 scand-exp)
(scand-rand2 scand-exp) (scor-rand2 scand-exp)
(scand? exp) (scand? exp)

20

Environments

The environments used in IBEX are similar to those used in BINDEX. In particular, IBEX
environment include the following operations discussed in class:

(env-empty)
Returns the empty environment.

(env-bind key value env)
Returns a new environment that has a binding between key and value in addition to all the
bindings of env. The binding between key and value overrides any existing binding for
key in env.

(env-lookup key env)
Returns the value bound to key in env, or a special unbound token if no such binding exists.

A difference between the env-lookup defined above and the one defined in class is that the one
define above returns a distinguished “unbound” token (that is different from false) to indicate
that a key is not bound in the environment. The unbound token is the only Scheme value for
which the following predicate returns true:

(unbound? value)
Returns true if value is the distinguished unbound token and false otherwise.

In IBEX, it is necessary to distinguish the unbound token from the false value because the false
value may be bound to a name in an environment. With this change, the variable reference clause
of env-eval becomes:

 ((varref? exp)
 (let ((probe (env-lookup (varref-name exp) env)))
 (if (unbound? probe)
 (error "ENV-EVAL: Unbound variable -- "
 (list 'exp = exp 'env= env))
 probe)))

Additionally, there are more operations in the environment contract than discussed in class. See
Appendix C for details.

Sets

The set operations are those presented in class, except for one addition: union-map, which
unions together the sets that result from mapping a set-producing function over the elements of a
list:

 (define union-map
 (lambda (f lst)
 (foldr set-union
 (set-empty)
 (map f lst))))

21

Exception Handling

When a BINDEX interpreter encountered an error, it used Scheme’s error construct to halt the
computation and print a message indicating the problem. When it come to testing an interpreter
on a suite of test programs, however, we don’t want the interpreter to halt when it encounters an
error. Rather, we would like to be able to observe the error, but proceed to evaluate other
programs in the test suite.

In order to get this behavior, we need some sort of exception handling mechanism, like Java’s
throw and try. Recall that Java programs can use throw to “throw” an exception value that is
“caught” by the nearest dynamically enclosing instance of try. Any pending computation
between the point of the throw and the point of the try is aborted. (If you don’t understand this,
don’t worry - we will study exception handling in more detail later in the semester.)

Although such an exception handling mechanism is not a part of standard Scheme, it is easy to
implement one (in less than a page of code!). The mechanism uses the following throw and
catch constructs:

(throw tag info)
Throw an exception with tag tag and information value info to the nearest dynamically
enclosing catch, where it will be handled. All pending computation between the point of the
throw and the point of the catch is aborted. It is assumed that the entire program is wrapped
in a default exception handler that prints out the tag and info.

(catch thunk handler)
Assume that thunk is a zero-parameter procedure and handler is a two-argument procedure.
Establish an exception handler handler that is in effect during the computation generated by
applying thunk to zero arguments. If the computation does not throw any exceptions, then
catch returns with the value of the computation. But if the computation throws an exception,
catch returns the result of applying handler to the tag and info of the exception.

As an example, consider the following function and sample invocations:

(define catch-test
 (lambda (x)
 (catch (lambda ()
 (* (+ (if (even? x)
 (throw 'even x)
 x)
 1)
 (- (if (< x 0)
 (throw 'negative x)
 x)
 1)))
 (lambda (tag value) (list tag value)))))

> (catch-test 3)
8 ; = (+ (+ 3 1) (- 3 1)

> (catch-test 4)
(even 4)

> (catch-test -3)
(negative –3)

In the IBEX interpreter, you should always use throw rather than Scheme’s error to indicate an
error. The part of IBEX that tests suites of sample programs depends on this. Note: you should
only have to put throw in your programs; you should not write any instances of catch.

22

Primitive Operators

During evaluation, a primitive application “works” only if the length of the rands list is the
expected number of operands for the operator, and the types of the actual operands matches the
types expected by the primitive operator. To keep track of this sort of information, we will create
a primop descriptor (pdesc for short) for each primop that contains the following:

Ø The name of the primop.
Ø A list of the argument types expected by the primop. We will use the symbol int to

represent the integer type and the symbol bool to represent the boolean type. The length
of this list is the number of arguments of the primop.

Ø The result type of the primop.
Ø The Scheme function that computes the result of the primop for inputs of the right type.

The contract for to primop descriptors is as follows:

(make-pdesc name arg-types result-type scheme-function)
Returns a descriptor with the given information.

(pdesc-num-args descriptor)
Returns the number of arguments expected by the primop.

The following return the named component of the descriptor:
(pdesc-name descriptor)
(pdesc-arg-types descriptor)
(pdesc-result-type descriptor)
(pdesc-function descriptor)

For example, the descriptor for the addition primop can be created as follows:

(make-pdesc ‘+ ‘(int int) ‘int +)

To help with the creation of binary arithmetic primops, we define the following auxiliary
function:

(define make-binary-arithop
 (lambda (name function)
 (make-pdesc name '(int int) 'int function)))

We can collect all the primitive descriptors for a language into a primop environment that
associates each primop name with its descriptor. For instance, below is the primop environment
for BINDEX. This environment can easily be extended to add new primitive operations into a
language. In this assignment you will see how to add relational and logical operators, but it
would be straightforward to add operations for characters, strings, lists, arrays, etc.

(define primop-env
 (bindings->env
 (list
 ;; BINDEX primops
 (make-binding '+ (make-binary-arithop '+ +))
 (make-binding '- (make-binary-arithop '- -))
 (make-binding '* (make-binary-arithop '* *))
 (make-binding 'div (make-binary-arithop 'div quotient))
 (make-binding 'mod (make-binary-arithop 'mod remainder))
)))

23

The key use of the primop environment is to define what it means to apply a primop to a list of
values. Here is a primapply fuction that extends the functionality of the binop-to-function
operator we studied in the context of BINDEX evaluation:

 (define primapply
 (lambda (primop-name args)
 (let ((pdesc (env-lookup primop-name primop-env)))
 (if (unbound? pdesc)
 (error "PRIMAPPLY: Unknown primop -- " primop-name))
 (apply (pdesc-function pdesc) args)))))

For example, (primapply ‘+ ‘(2 3)) yields 5. The primapply function works for primops of
any number of arguments, where the arguments can be of any type. It is implemented in terms of
Scheme’s primitive apply function, which applies a primitive to a list of values. The primapply
function is used to define the primapp clause in subst-eval and env-eval:

;; PRIMAPPLY clause within SUBST-EVAL
((primapp? exp)
 (primapply (primapp-rator exp)
 (map subst-eval (primapp-rands exp))))

;; PRIMAPPLY clause within ENV-EVAL
 ((primapp? exp)
 (primapply (primapp-rator exp)
 (map (lambda (rand) (env-eval rand env))
 (primapp-rands exp))))

24

Appendix C: Environment Contract

An environment is an immutable table-like data structure that maintains associations between
keys and values. Several of the operations mention an explicit binding datatype, defined by the
following contract:

(make-binding key value) Returns a binding between key and value.
(binding-key binding) Returns the key of binding.
(binding-value binding) Returns the value of binding.

There is also a distinguished unbound value used to indicate failure in env-lookup.

(unbound? value)
Returns true if value is the distinguished unbound token and false otherwise.

Here are the operations on environments:

(bindings->env bindings)
Returns the environment made from the given list of bindings.

(env-bind key value env)
Returns a new environment that has a binding between key and value in addition to all the
bindings of env. The binding between key and value overrides any existing binding for
key in env.

(env->bindings env)
Return a list of the bindings env. The resulting list should have at most one binding for any
key The order of the names does not matter, but should be the for different calls to env-
bindings on the same environment

(env-empty)
Returns the empty environment.

(env-extend keys values env)
Returns a new environment with bindings between keys and values in addition to all the
bindings of env. These bindings override any existing bindings for keys in env.

(env-lookup key env)
Returns the value bound to key in env, or a special unbound token if no such binding exists.

(env-keep keys env)
Returns an environment containing only the bindings of env whose keys are in the list keys.

(env-make keys values)
Returns an environment containing bindings between the keys of the list keys and the
corresponding values of the list values.

(env-merge env1 env2)
Returns a new environment that includes all the bindings of env1 and all the bindings of
env2. When a key is bound in both, the binding in env1 takes precedence.

(env-remove keys env)
Returns an environment containing only the bindings of env whose keys are not in the list
keys.

25

Problem Set Header Page:
Please make this the first page of your submission.

CS251 Problem Set 3
Due Saturday, March 11, 2000

Name:

Date & Time Submitted (only if late):

Collaborators (anyone you collaborated with in the process of doing the problem set):

In the Time column, please estimate the time you spent on the parts of this
problem set. Please try to be as accurate as possible; this information will help
me to design future problem sets. I will fill out the Score column when grading
your problem set.

Part Time Score

General Reading

Problem 1 [25]

Problem 2 [20]

Problem 3 [25]

Problem 4a [10]

Problem 4b [15]

Problem 4c [15]

Problem 4d [10]

Problem 5 [30]

Problem 6 [50]

Total [200]

