CS251 Programming Languages Handout # 17
Prof. Lyn Turbak Sunday, February 25
Wellesley College

Problem Set 4
Due: Monday, March 5, 2001

In this assignment, you will further study naming issues and will extend the IBEX language
implementation to support several new features.

Submission:

e Problem 1 is a pencil-and-paper problem that only needs to appear in your hardcopy submis-
sion.

For Problems 3 and 4, your softcopy submission should include a copy of your entire ps4
directory.

Your hardcopy submission for Problem 2 should be the file primops.scm.
e Your hardcopy submission for Problem 3 should be the file desugar.scm.

e Your hardcopy submission for Problem 4 should be the file type-check.scm.

Problem 0: Studying IBEX

All of the problems on this problem set involve the IBEX language discussed in class or ex-
tensions to this language. IBEX is an extension of BINDEX that supports boolean values and
conditionals, as well as other primitive datatypes and operations.

Before attempting the problems, you should study the code for the implementation of the IBEX
language, which can be found in ~/cs251/ps4 after you perform cvs update -d.

Although there is nothing to turn in for this problem, the rest of the problems will be significantly
easier once you understand how IBEX works.

To use any of the functions defined within files in the ps4 directory, you should evaluate the
following in Scheme:

(cd "~/cs251/ps4")
(load "load-ibex.scm")

Having done this, you can now experiment with any functions in the IBEX interpreter. For
example:

;; Run the absolute value program on the input -4
;5 under the environment model
(env-run ’(program (a)
(if (< a 0)
(- 0a
a))
7 (-4))

;; Run the absolute value program on the input -4
;; under the substitution model
(subst-run ’(program (a)
(if (< a 0)
(- 0 a)
a))
7 (-4))

;3 Calculate free variables of an expression.
(free-vars *(if (< ab) (+ ac) (x b d)))
(abcd)

;; Rename a variable in an expression.
(rename ’a ’b ’(bind b (+ a b) (* a b)))
(bind b_1 (+ b b) (* b b_1))

;3 Perform a substitution in an expression.
(subst (env-make ’(a c)
(map make-literal ’(3 5)))
’(bind ¢ (+ a b) (*x ¢ d)))
(bind ¢ (+ 3 b) (* ¢ d))

Problem 1 [25]: bindpar and bindseq

a [5]: Suppose that the following program is run on the arguments 3 and 5. Indicate the value
that each name will be bound to during the execution, and also indicate the resulting value of
the program.

;; BINDSEQ test program
(program (a b)
(bindseq ((a (* a b))
(b (+ a b))
(bindseq ((a (- b a))
(b (div b a)))
(+ a b))))

b [5]: Redo part a, except using a version of the program in which every bindseq has been
replaced by bindpar.

¢ [5]: Write the result of desugaring the programs from both part a and part b into BINDEX
programs that use only bind in place of bindseq and bindpar. (You should perform the desugar-
ing by hand and not use Scheme to do it for you!) Assume a reasonable convention for a-renaming
bound variables when necessary.

d [10]: Fig. 1 shows the clause for handling bind within the subst function of the BINDEX
and IBEX implementations.

1. Explain why the substitution on the body of the bind is performed with respect to new-env
(in which any binding for the bound variable of the bind has been removed) rather than
to env. Use example(s) to illustrate would would go wrong if the substitution on the body
used env instead of new-env.

2. Consider the final if expression within the bind clause of subst in Fig. 1. In a call-by-value
substitution model interpreter, it turns out that only the else branch of this if will ever
be taken. Explain why this is so.

3. Give a BINDEX expression whose evaluation under a call-by-name substitution model
interpreter would cause the then branch of the final if to be taken. Argue that taking the
else branch instead would cause the evaluator to give the wrong answer.

((bind? exp)
(let ((name (bind-name exp))
(defn (bind-defn exp))
(body (bind-body exp))
(bind-fvs
;; This used to be defined as (free-vars exp).
;; The old definition wasn’t wrong, but wasn’t as
;; precise as it could have been. In particular,
;; we only care about the free vars in the body,
;; not in the defn.
(set-difference (free-vars (bind-body exp))
(set-singleton (bind-name exp)))))
(let ((new-env (env-remove (list (bind-name exp)) env)))
;3 CAPTURABLES is the set of free vars that will be in the
;; copy of BIND returned by SUBST.
(let ((capturables
(foldr set-union
(set-empty)
(map (lambda (fv)
(let ((probe (env-lookup fv new-env)))
(if (unbound? probe)
(set-empty)
(free-vars probe))))
bind-fvs))))
(if (set-member? name capturables)
;3 Then Branch
(let ((new-name (name-not-in name capturables)))
(make-bind new-name
(subst env defn)

(subst new-env (rename name new-name body))))

;3 Else Branch
(make-bind name
(subst env defn)
(subst new-env body)))))))

Figure 1: Clause for handling bind within the subst function.

Problem 2 [15]: Extending IBEX with string operations

Strings

The IBEX language implementation is designed to make it fairly easy to add new primitive
dataypes and operations on these datatypes. As an example of this, you will be extending IBEX
to handle strings.

Conceptually, a string is just a sequence of characters. We will adopt the convention used in
most languages (including C, Java, Scheme, ML, and Haskell) that a string literals are denoted
by text delimited by double quotes. For example, here are some string literals: "", "a", "cs251",
"I do not like them, Sam I am!".

For adding strings to IBEX, it is easiest to assume that IBEX strings are simply represented
as strings in the underlying Scheme implementation. (This is the same decision made for IBEX
integers; but recall that IBEX booleans and symbols are represented differently than in Scheme.)
We add strings to the abstract syntax of IBEX via the following functions:

;; Define an IBEX string as a Scheme string
(define ibex-string? string?)

;; Extend LITERAL? to recognize strings.
(define literal?
(lambda (exp)
(or (ibex-integer? exp)
(ibex-boolean? exp)
(ibex-symbol? exp)
(ibex-string? exp) ; *** Strings are a new kind of literal

)))

;; Extend TYPE-OF with a new STRING type.
(define type-of
(lambda (val)
(cond ((ibex-integer? val) ’int)
((ibex-boolean? val) ’bool)
((ibex-symbol? val) ’sym)
((ibex-string? val) ’string) ; *** New type for strings
(else (throw ’type-of-unknown-value val))

)))
With the above additions, it is possible to use string literals in IBEX programs. For example:

(program (n)
(if (> n 0)
"positive"
(if (=n 0)
n Zero n
"negative")))

In addition to including string literals, however, we would also like to extend IBEX with operations
that allow analyzing the structure of a string and synthesizing new strings. In particular, consider
the following four string operations:

(strlen str)
Returns the length (number of characters in) the string str.

(strlt strl str2)

Returns true if strl is less than str2 in the lexicographic (dictionary) ordering of strings, and
false otherwise. For example, the following are arranged in lexicographic order: "", "a",
Ilaall, llabll’ llbll’ Ilball, Ilbbll.

(str+ strl str2)
Returns the string that has all the characters of stril followed by all of those of str2. For
example, (str+ "ab" "bcd") yields "abbcd".

(substr lo hi str)

Assume that the characters of a length-n string are indexed from 1 (the first character) to
n (the last character). Returns the string consisting of all the characters between indices lo
and hi, inclusive. If o is greater than hi, then the empty string is returned. If either index is
out of the range [1..n], then throws an exception whose tag is substr:index-out-of-bounds
and whose value is the offending index. For example:

(substr 1 1 "abcdef") ; Returns "a”

(substr 2 5 "abcdef") ; Returns ”"bcde”

(substr 3 2 "abcdef") ; Returns ””

(substr 0 5 "abcdef") ; Throws exception substr:index-out-of-bounds 0
(substr 2 7 "abcdef") ; Throws exception substr:index-out-of-bounds 7

Your Task

Your task is to extend IBEX with the above four string operations by adding appropriate
bindings to the primop-env environment in the file primops.scm. Each binding associates a name
with a primitive operator descriptor created by invoking make-pdesc on four arguments:

1. the name of the operator (a symbol);
2. the types of the operands (a list of symbols);
3. the return type (a symbol);

4. a Scheme function that takes the specified number and types of arguments and returns the
specified type of result.

You will need to use Scheme string operations in your implementation. For documentation on
these, consult the section on strings in the Revised® Report on the Algorithmic Language Scheme
(R5RS).

You can test your implementation by invoking (test-strings).

Problem 3 [25]: Desugaring classify

The classify construct

You are a summer programming intern at Sweetshop Coding, Inc. Your supervisor, Dexter
Rose, has been studying the syntactic sugar for Scheme and is very impressed by the cond and case
constructs. He decides that it would be neat to extend IBEX with a related classify construct
that classifies an integer relative to a collection of ranges. For instance, using his construct, Dexter
can write the following grade classification program:

(program (grade)
(classify grade
((90 100) (symbol A))
((80 89) (symbol B))
((70 79) (symbol C))
((60 69) (symbol D))
(otherwise (symbol F))))

This program takes an integer grade value and returns a symbol indicating which range the grade
falls in.
In general, the classify construct has the following form:

(classify Egigc
((Eio, Eni,) FEbody,)

((Eyo,, Eni,) Ebody,)
(otherwise FEggt))

The evaluation of classify should proceed as follows. First the discriminant expression Egisc

should be evaluated to the value Vgisc. Then Vyisc should be matched against each of the clauses

((Eio; Eni;) Ebody,) from top to bottom until one matches. The value matches a clause if it lies in

the range between Vi, and Vy;,, inclusive, where V), is the value of Ej,,, and Vy;, is the value

of Epj;. When the first matching clause is found, the value of the associated expression Epoqy, is

returned. If none of the clauses matches Vs, the value of the default expression Eqq; is returned.
Here are a few more examples of the the classify construct in action:

; Program 2
(program (a b ¢ d)
(classify (* ¢ d)
((a (- (div (+ a b) 2) 1)) (*x a c))
(((+ (div (+ ab) 2) 1) b) (* b d))
(otherwise (- d ¢))))

; Program 3
(program (a)
(classify a
(0 9) a)
(((div 20 a) 20) (+ a 1))
(otherwise (div 100 (- a 5)))))

Program 2 emphasizes that any of the subexpressions of classify may be an arbitrary expression
that requires evaluations. In particular, the upper and lower bound expressions need not be integer
literals. For instance, here are some examples of the resulting value returned by Program 2 for
some sample inputs.

a | b |c|d| result
101203 |4 30
101203 (6| 120
1012035 2

Program 3 emphasizes that (1) ranges may overlap (in which case the first matching range is chosen)
and (2) expressions in clauses after the matching one are not evaluated. For instance, here are here
are some examples of the resulting value returned by Program 3 for some sample inputs.

a | result
0 0

5 5
10 11
20 21
25 5
30 4

Your Task

Dexter has asked you to implement the classify construct in IBEX as syntactic sugar by
extending the desugar function in desugar.scm with a clause for classify. You should use the
abstract syntax functions in Fig. 2 to manipulate classify expressions. Your desugaring should
only evaluate Egisc once; to guarantee this, you will need to name the value with a “fresh” variable
(one that does not appear elsewhere in the program). Use the name-not-in function described in
Fig. 3 to choose a variable not in a given list.

You can test your implementation by invoking (test-classify). This will use env-run to run
various programs containing classify expressions to make sure that they evaluate to an expected
answer. If not, the original (sugared) program and the desugared program will be displayed.

(make-classify disc clauses default)
Returns a classify construct with discriminant disc, clauses clauses, and default expression default.

(classify-discriminant classify-node)
Returns the discriminant of classify-node.

(classify-clauses classify-node)
Returns a list of the clauses of classify-node.

(classify-default classify-node)
Returns the default expression of classify-node.

(classify? node)
Returns #t if node is a classify node, and #f otherwise.

(classify-clause-lo classify-clause)
Returns the lower bound expression of classify-clause.

(classify-clause-hi classify-clause)
Returns the upper bound expression of classify-clause.

(classify-clause-body classify-clause)
Returns the body expression of classify-clause.

Figure 2: Abstract syntax for classify.

(name-not-in name names)

Returns the first “subscripted” version of name that is not an element of name list names. For
example, (name-not-in ’a ’(b c d)) returns a_1 and (name-not-in ’a ’(a_2 a_4 a_l1)) returns
a 3. If name is already subscripted, the existing subscript is removed before computing the new one.
For instance (name-not-in ’a_7 (a2 a4 a_1)) returns a_3.

Figure 3: Specification for the name-not-in function.

Problem 4 [35]: Static Type-Checking of IBEX Programs

Dynamic vs. Static Type-Checking
In IBEX, when a primitive operator is applied to the wrong number or wrong types of argu-
ments, an exception is thrown that reports the error. For example:

e Evaluating (+ 4) throws an exception with tag primapply:wrong-num-args and with infor-
mation value (expected 2 got 1 in (+ 4)).

e Evaluating (+ 4 5 6) throws an exception with tag primapply:wrong-num-args and with
information value (expected 2 got 3 in (+ 4 5 6)).

e Evaluating (+ 4 true) throws an exception with tag primapply:wrong-arg-type and with
information value (expected int got true in (+ 4 true)).

Catching and reporting such type errors at run-time is run is called dynamic type-checking.
Scheme and Logo are examples of languages in which all type-checking is dynamic.

A disadvantage of dynamic type-checking is that type errors are not caught until the program
is run on actual arguments. Yet, without knowing the actual arguments, we can often deduce
that a program will have a type error. Finding type errors in program without running it is
called static type-checking. Java, Pascal, ML, and Haskell are examples of languages with static
type-checking.! Even in languages with static type-checking, certain kinds of checks must still be
performed dynamically; for example:

e checking if an array subscript is out of bounds;

e checking if an attempt is made to take the head or tail of an empty list;
e checking if the second argument of a divide operator is zero;

e checking (in Java) to see if an object cast to a type is really of that type.

In many statically type-checked languages (such as Java and Pascal), it is necessary for the
programmer to explicit annotate the program to indicate the types of various variables and ex-
pressions. However, some languages (such as ML and Haskell) are able to infer almost all type
information without requiring the programmer to include explicit annotations. Such languages use
an approach known as type inference to infer the types of expressions.

Static Type-Checking in IBEX

Because IBEX is such a simple language, it is easy to deduce the types of all expressions
without any explicit type information. All IBEX program parameters are required to be integers,
and the number and types of all IBEX primitive operators are known. This means that it is
easy to determine the type of any tree of primitive applications and conditionals whose leaves are
either literals and references to the program parameters. Assuming inductively that the type of
the definition of a bind can be determined, it is also possible to handle expression trees with bind
nodes whose leaves include variables declared by a bind.

For example, consider the following program:

!The C programming language has a very crude notion of type that is used more to tell the compiler how big
values are than it is used to guarantee the safety of a program. Indeed, it is so easy to “fool” the C type system that
it can hardly be considered to be a statically type-checked language.

10

(program (a b ¢)
(bind d (* b c)
(if (< a d)
(- ad
(+ a c)))

We can reason about the types in this program as follows:

e Assume program parameters a, b, and ¢ denote integers.

e Since b and ¢ are integers, and * maps two integers to an integer, d is an integer.

e Since a and d are integers, and < maps two integers to a boolean, (< a d) denotes a boolean.
e Since a and d are integers, and — maps two integers to an integer, (- a d) denotes an integer.
¢ Since a and c are integers, and + maps two integers to an integer, (+ a c) denotes an integer.

e Since (< a d) denotes a boolean and both (- a d) and (+ a c) denote integers, the condi-
tional expression (if (< a d) (- a d) (+ a c)) denotes an integer.

Thus, we are able to reason that (1) the program has no type errors and (2) the program returns
an integer.
If we change the * to = in the above program, we would discover a type error as follows:

e Since b and c are integers, and = maps two integers to a boolean, d is a boolean.

e In (< a d), < expects that both operands are integers. But d is a boolean, so this is a type
€rror.

Note that the type error is discovered without having run-time values for a, b, and c.

The process of type checking in IBEX can be performed in a manner similar to evaluation via the
environment model interpreter. In analogy with env-eval, we can write a function type-eval that
takes two arguments: (1) an IBEX expression to be type-checked and (2) a type environment
that binds names to types (rather than to values). Here a type is assumed to be represented as
one of the Scheme symbols int, bool, sym, or string. If the expression is well-typed in the given
environment (i.e., has no static type errors), the type-eval returns the type of the given expression.
But if the expression contains a static type error, type-eval throws an exception indicating the kind
of type error encountered. (The kinds of static type errors that should be caught are summarized
in Fig. 4.) Using type-eval, it is easy to write a function (type-check program) that returns
the type of the value computed by a program, assuming that all of its parameters are integers.

Note that it is considered a static type error for the two branches of an if expression to have
different types even though an expression with such an “error” may not generate a dynamic type
error. For example, (+ 1 (if (< 1 2) (+ 3 4) (< 5 6))) has a static type error but not a
dynamic type error. In order to catch errors without running the program, we often have to add
additional restrictions to our language that prohibit programs that would not give errors at run-
time. In return, we get a guarantee that any program without a static type error will not generate
a dynamic type error when it is executed.

11

Kind of Type Error Symbolic Tag Information Value
The number of actual argu- | primapply:wrong-num-args
ments n in primitive application
primapp does not match expect-
ed number of arguments k.

(expected k
got n
in primapp)

The actual type atype of a sup- | primapply:wrong-arg-type
plied argument does not match
the expected type etype for that
arugment in primitive application
primapp.

(expected etype

got atype
in primapp)

The test expression testexp of if :non-boolean-test
an if expression denotes a non- testexp
boolean value.

Given an if expression (if tes- if:branch-mismatch
texp thenexp elseexp), the type
thenty of testexp does not match
the type elsety of elseexp.

(then: thenexp
has-type thenty
else: elseexp
has-type elsety)

A variable reference to name unbound-variable

name is unbound. name
The operator rator of a primitive unknown-primop

application is not recognized. rator

Figure 4: Exceptions that may be thrown during the static type-checking of and IBEX program.

12

Your Task
For this problem, you are to flesh out the definitions of the functions type-check, type-eval,
and static-primapply within the file type-check.scm. These have the following contracts:

(type-check pgm)

If the IBEX program pgm has no static type errors, returns the type of the value that
would be returned by pgm if it were run on the appropriate number of integer arguments. If
pgm has static type errors, throws an exception indicating the first static type-checking error
encountered in the type-checking process.

(type-eval exp tenv)

Assume that tenv is a type environment mapping the free variables in exp to their static
types. Returns the result of type-checking exp in the context of the type environment tenv.
If exp contains static type errors, throws an exception indicating the first static type-checking
error encountered in the type-checking process.

(static-primapply primapp actual-types)

Returns the type of value that would result from applying the operator of primapp to the
values whose types are given by the list of types actual-types. In cases where a type error is
found, throws an appropriate exception. The first argument is the entire primitive application
node primapp rather than just its operator because some of the exceptional cases require
including the primapp node in their information value.

Notes:

e Your definitions of type-check/type-eval should have the same basic structure as env-run/env-eval
in env-eval.scm, and as simplify/simp in Problem 4 of PS3. Your definition of static-primapply
should have the same basic structure as primapply in primops.scm. For this reason, be sure
to carefully study env-run, env-eval, and primapply before attempting this problem.

e You can test your type-checker by evaluating (test-type-check). This will run your type
checker on a suite of sample programs (both with and without type errors).

e To throw an exception like that for the wrong number of arguments, adapt the following
idiom:

(throw ’primapply:wrong-num-args
(list ’expected Fexpected

’ gOt Eactual
’in Eprimapp))

Here, Ecxpected 18 a Scheme expression denoting the expected number of arguments, E,ctyal
denotes the actual number of arguments, and Ej,imapp denotes the primitive application node.

e For determining the types of literals and finding type mismatches, you should use the following
functions defined in primops.scm:

13

(define type-of
(lambda (val)

(cond ((ibex-integer? val) ’int)
((ibex-boolean? val) ’bool)
((ibex-symbol? val) ’sym)

((ibex-string? val) ’string)
(else (throw ’type-of-unknown-value val))

)))

(define type-error?
(lambda (type val)
(not (eq? type (type-of val)))))

e The wrong argument type exception requires finding an operand expression that is not of the
expected type. For this purpose, you will probably find it handy to use the some2 higher-order
list operator, which returns the first duple of corresponding items from two lists satsifying a
given binary predicate. For example:

(some2 (lambda (x y) (> (*x x y) 100))
> (60 50 40 30 20 10)
’(1 2345 6))

; Returns (40 3)

As with some, some2 returns a distingushed none token if there is no duple satisfying the binary
predicate. The none? function tests for the none token. For example:

(none? (some2 (lambda (x y) (> (* x y) 100))
?(60 50 40 30 20 10)
’(1 2345 6)))

; Returns #f because some2 returns (40 3)

(none? (some2 (lambda (x y) (> (* x y) 200))
’(60 50 40 30 20 10)
’(1234586)))

; Returns #t because some2 returns the none token.

14

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS251 Problem Set 4
Due Monday, March 5

Names of Team Members:
Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem
set):

In the Time column, please estimate the time you or your team spent on the parts of this problem
set. Team members should be working closely together, so it will be assumed that the time reported
is the time for each team member. Please try to be as accurate as possible; this information will
help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [25]

Problem 2 [15]

Problem 3 [25]

Problem 4 [35]

Total

15

