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Control

Handout #41

CS251 Lecture 37

April 30, 2002

What is Control?

• In program execution, control refers to “where” the computation currently is.

• Control is characterized by two components:

(1) the expression (or statement) currently being evaluated.

• CS111: the red control dot.

• CS240: the program counter.

• CS251:  the argument to subst-eval in the substitution model

(2) The continuation = all the pending operations that need to be performed when
the value of the expression currently being evaluated is returned.

• CS111: the pending execution frames in the Java Execution Mode.

• CS240:  the stack of procedure call activation frames.

• CS251:  the surrounding expressions in the Scheme substitution model

We will call the pair of (1) and (2) a control point.

• All computation is an iteration through control points.
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Control Point Example 1

               Expression                      Continuation

(/ (+ (* 6 5) (- 7 3)) 2)  top

(+ (* 6 5) (- 7 3))        (λ (v1) (top (/ v1 2)))

(* 6 5)                    (λ (v2) (top (/ (+ v2 (- 7 3)) 2)))

(- 7 3)                    (λ (v3) (top (/ (+ 30 v3) 2)))

(+ 30 4)                   (λ (v1) (top (/ v1 2)))

(/ 34 2)                   top

→ 17

Notes:

•  Continuations are modeled as single-argument functions.

•  top designates the top-level continuation

•  The above assumes left-to-right evaluation of arguments
   (MIT  Scheme evaluates them right-to-left.)

Control Point Example 2: Recursive Factorial

   Expression                Continuation

(fact-rec 3)       top

(fact-rec 2)       (λ  (v1) (top (* 3 v1)))

(fact-rec 1)       (λ  (v2) (top (* 3 (* 2 v2))))

(fact-rec 0)       (λ  (v3) (top (* 3 (* 2 (* 1 v3)))))

(* 1 1)            (λ  (v2) (top (* 3 (* 2 v2))))

(* 2 1)            (λ  (v1) (top (* 3 v1)))

(* 3 2)            top

→ 6

(define (fact-rec n)
  (if (= n 0)
       1
       (* n (fact-rec (- n 1)))))

Note the stack-like nature of continuations.
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Control Point Example 3: Iterative Factorial

      Expression          Continuation

(fact-iter 3)           top

(fact-tail 3 1)         top

(fact-tail 2 3)         top

(fact-tail 1 6)         top

(fact-tail 0 6)         top

→ 6

(define (fact-iter n) (fact-tail n 1))

(define (fact-tail num ans)
  (if (= num 0)
      ans
      (fact-tail (- num 1) (* num ans))))

Note:  A function call is tail recursive if it does not alter continuation

Control Aspects of Familiar Constructs

• Evaluating nested subexpressions requires choosing an order and
remembering what to do next.
– Argument evaluation order is left-to-right in most language.

– Evaluation order unspecified in Scheme (right-to-left in MIT Scheme).

• Sequencing of statements in imperative language.

• Conditionals allow branches in control flow.

• Loops/tail recursion specify iterations.

• Function/procedure call and return:
– In many execution models (e.g., C, Pascal, Java), calling a procedure pushes an

activation frame on the call stack and returning from a procedure pops the
activation from from the call stack.

– In properly tail-recursive languages (e.g. Scheme, most ML implementations)
stack is pushed by subexpression evaluation and procedure calls act like “gotos
that pass arguments” (see Guy Steele’s, “Debunking the Expensive Procedure
Call Myth or Lambda: The Ultimate Goto.”)
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Altering the Normal Flow of Control

Sometimes want to “break out” from the normal flow of control in a program:

• Want to immediately stop execution of the program, due to request from user
(typing Control-C) or due to finding an error. E.g. Scheme’s error; halt
opcode in assembly language.

• Discover an answer “early” and want to return it immediately without
processing all pending computations. E.g. encountering a zero when finding
the product of a list or array.

• Encounter an unusual situation that may need to be handled differently in
different contexts. E.g., division by zero, out-of-bounds array access,
unbound variables in environment lookup.

• Altering the normal flow of control can be very convenient and efficient, but
can also lead to “spaghetti code”. Dijkstra’s “Goto Considered Harmful”
and the structured programming movement of the 1970s advocated control
constructs with one control input and one control output.

Non-local Exits: Return

In C, C++, and Java, return can force “early” exit of a function/method.

Example (Java): calculating array product. Want to return early if encounter a
zero. Also suppose that encountering any negative number should cause the
result to be -1.

public static int arrayProd (int[] a) {

  int prod = 1;

  for (int i = 0; i < a.length; i++) {

    if (a[i] == 0)

       return 0; // Non-local exit from loop

    else if (a[i] < 0) then

   return -1; // Non-local exit from loop

    else

      prod = a[i] * prod;

  }

  return prod;

}
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Non-local Exits: Break

Java has labeled break statements for breaking out of a loop.

public static int sumArrayProds (int[][] a) {

  int sum = 0;

  outer:for (int i = 0; i < a.length; i++) {

    int prod = 1;

    inner:for (int j = 0; i < a[i].length; j++) {

      if (a[i][j] < 0)

        break outer; // Return current sum on negative num

      else if (a[i][j] == 0) {

        prod = 0; break inner;

        // Alternatively: continue outer;

      else

        prod = a[i][j] * prod;}

    sum = sum + prod;}

  return sum;}

• Java’s labeled continue statement jumps to end of specified loop.

• C’s unlabeled break and continue that work on innermost enclosing loop.

Non-Local Exits: Goto

In Pascal, can only express non-local exits via goto:

function product (outer_lst: intlist): integer;

  label 17; {labels are denoted by numbers 0 to 9999}

  function inner (lst: intlist): integer;

   begin

     if lst = nil then

      inner := 1

     else if lst^.head = 0 then

      begin

       product := 0; {Sets return value of function}

       goto 17; {Control jumps to label 17}

      end;

     else

      inner := lst^.head * inner(lst^.tail)

   end;

begin

    product := inner (outer_lst);

  17:

       end;
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Non-Local Exits: Label and Jump

We will study non-local exits in Scheme by extending it with the following label
and jump constructs:

(label I E)

Evaluates E in a lexical environment in which the name I  is bound to a first-class
control point that represents the continuation of the entire label expression.

(jump E1 E2)

Returns the value of E2 to the control point that is the value of E1.

   jump signals an error if E1 is not a control point.

Label and Jump: Simple Examples

(+ 1 (label exit (* 2 (- 3 (/ 4 1)))))

(+ 1 (label exit (* 2 (- 3 (/ 4 (jump exit 5))))))

(+ 1 (label exit

       (* 2 (- 3 (/ 4 (jump exit (+ 5 (jump exit 6))))))))

(+ 1 (label exit1

       (* 2 (label exit2

              (- 3 (/ 4 (+ (jump exit2 5)

                           (jump exit1 6))))))))
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Label and Jump: List Product

(define product

  (lambda (outer-list)

    (label return

      (letrec ((inner (lambda (lst)

                        (if (null? lst)

                            1

                            (if (= (car lst) 0)

                                (jump return 0)

                                (* (car lst)

                                   (inner (cdr lst))))))))

         (inner outer-list)))))

Label and Jump: List Product Alternative

(define product

  (lambda (outer-list)

    (label return

      (foldr (lambda (x ans)

               (if (= x 0)

                   (jump return 0)

                   (* x ans)))

             1

             outer-list))))
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Control Points Introduced by label are First-Class

(define fact

  (lambda (n)

    (let ((loop ‘later) ; don’t care about initial value

          (ans 1))

      (begin

        (label top (set! loop (lambda () (jump top ‘ignore))))

        (if (= n 0)

            ans

            (begin

              (set! ans (* n ans))

              (set! n (- n 1))

              (loop)))))))

First-class Control Points can do Strange and Wondrous Things!

(let ((g (lambda (x) x)))

  (letrec ((fact (lambda (n)

                    (if (= n 0)

                        (label base

                          (begin

                            (set! g (lambda (y)

                                      (begin

                                        (set! g (lambda (z) z))

                                        (jump base y))))

                            1))

                        (* n (fact (- n 1)))))))

    (+ (g 10)

       (+ (fact 3) ; Cont. = (lambda (v) (+ 10 (+ v (+ …)))

          (+ (g 10)

             (+ (fact 4) ;Cont. = (abs (v) (+ 10 (+ 60 (+ 10 (+ v …)))))

                (g 10)))))))
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Scheme’s call-with-current-continuation

Off-the-shelf Scheme does not support label and jump. But it does support
call-with-current-continuation, which can be used to
implement most advanced control constructs.

 (call-with-current-continuation Eproc) behaves like:

   (let ((Iproc Eproc)) ;; Assume Iproc fresh

     (label here

       (Iproc (lambda (val) (jump here val)))))

Example of call-with-current-continuation

(define product

  (lambda (outer-list)

    (call-with-current-continuation

      (lambda (return)

 (letrec

   ((inner (lambda (lst)

             (cond ((null? lst) 1)

                   ((= 0 (car lst)) (return 0))

                   (else (* (car lst)

                            (inner (cdr lst))))

                   ))))

          (inner outer-list))))))
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Continuation Passing Style (CPS)

The constructs we have seen so far rely on implicit continuations. It is possible
to model non-local control flow by passing explicit continuations in a style
known as continuation-passing style.

For example, here is a CPS version of recursive factorial:

  (define fact-rec-cps

    (lambda (n k) ; k is the explicit continuation

      (if (= n 0)

          (k 1)

          (fact-rec-cps (- n 1)

                        (lambda (v) (k (* n v)))))))

(fact-rec-cps 3 (lambda (v) v))

(fact-rec-cps 4 (lambda (v) (+ 1 (* 2 v))))

CPS version of product

(define product

  (lambda (outer-list)

    (letrec ((inner

              (lambda (lst k) ; k is the explicit cont.

                (if (null? lst)

                    (k 1)

                    (if (= (car lst) 0)

                        0 ; return 0 directly,

                          ; thus punting continuation

                        (inner (cdr lst)

                               (lambda (v)

                                 (k (* (car lst) v)))))))))

      (inner outer-list (lambda (v) v)))))
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Exception Handling

Want to be able to “signal” exceptional situations and handle them differently in
different contexts.

Many languages provide exception systems:

• Java’s throw and try/catch

• ML’s raise and handle

• Common Lisp’s throw and catch

Raise, trap, and handle

We will study exception handling in a version of Scheme extended with the
following constructs:

• (raise T E)
       Evaluate E to value V and raise exception with tag T and value V.

• (trap T E_handler E_body)
     First evaluate E_handler to a one-argument handler function V_handler.
     Then evaluate E_body to value V_body. If no exception is encountered,
     return V_body. If an exception is raised with tag T and value V_val, the
     call to raise returns with the value of (V_handler V_val) evaluated at
     the point of the raise.

• (handle T E_handler E_body)
     First evaluate E_handler to a one-argument handler function V_handler.
     Then evaluate E_body to value V_body. If no exception is encountered,
     return V_body. If an exception is raised with tag T and value V_val, the
     call to handle returns with the value of (V_handler V_val) evaluated at
     the point of the handle.
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Exception Handling Examples

(define test
  (lambda ()
    (let ((raiser (lambda (x)
                    (if (< x 0)
                        (raise negative x)
                        (if (even? x)
                            (raise even x)
                            x)))))
      (+ (raiser 1) (+ (raiser -3) (raiser 4))))))

What is the value of the following, where handler_1 and handler_2 range over
{trap, handle}? First assume left-to-right argument evaluation, then right-to-left.

  (handler_1 negative (lambda (v) (- v))
    (handler_2 even (lambda (v) (* v v))
      (test)))

  (handler_1 even (lambda (v) (* v v))
    (handler_2 negative (lambda (v) (- v))
      (test)))


