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Imperative Programming

Handout #37

CS251 Lecture 28

April 9, 2002

Functional vs. Imperative Programming

• Functional Programming (e.g., Scheme, ML, Haskell)
– Heavy use of first-class functions

– Immutablility/persistence: variables and data structures do not change over
time.

– Expressions denote values

• Imperative Programming (e.g., C, Pascal, Fortran, Ada; core of C++, Java)
– Mutability/side effects: variables, data structures, procedures, input/output

streams can change over time:

– Often a distinction between expressions (which denote values) and statements
(which perform actions). In some languages, expressions do both.

– Imperative languages often have non-local control flow features (gotos, non-
local exits, exceptions). We will study these later.

• Combining functional and imperative programming
– Scheme and ML do have imperative features, but used sparingly. They are

“mostly functional” languages.

– First-class functions + side effects are at the core of many important
programming idioms.
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HOILEC = HOFL + Explicit Mutable Cells
HOILEC is HOFL extended with the following constructs:

(cell E) Return a cell whose contents is the value of E.

(cell-ref E) or (^ E) Return current contents of the cell designated by E.

(cell-set! Ecell Enew) or (:= Ecell Enew) Change the contents of the cell
designated by Ecell to be the value of Enew. Returns ()  (the unit value)

(cell-equal? E1  E2) Return true if E1 and E2 are the same cell and false
otherwise.

(cell? E) Return true if the value of E is a cell and false otherwise.

HOILEC cells model ML’s refs:
                        HOILEC                                  ML
          (cell E)              (ref E)

        (cell-ref E)             (! E)
               (cell-set! Ecell  Enew )   (Ecell :=  Enew )
       (cell-equal? E1  E2)       (E1 = E2)

      (cell? E)            No such operation

Sequential Execution
In the presence of side effects, order of evaluation is important!
HOILEC has the following for sequentializing expressions:

(seq E1 ... En)
Evaluate E1 . . . En in order and return the value of En.

Notes:

•  seq can be considered sugar for bindseq:

 (seq E1 ... En)
   desugars to (bindseq ((I1 E1 ) ... (In En)) In)
 ; Ii must be fresh!

• HOILEC’s (seq E1 ... En) corresponds to:
– Scheme’s (begin E1 ... En)
– ML’s (E1;...;En)
– Java’s and C’s {E1;...;En}
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Mutable Cells: Example

(bind a (cell (+ 3 4))

  (seq (writeln-int (^ a))

       (:= a (* 2 (^ a)))

       (writeln-int (^ a))

 (:= a (+ 1 (^ a)))

 (writeln-int (^ a))

       (bind b (cell (^ a))

         (bind c b

           (seq (writeln-int (cell-equal? a b))

                (writeln-int (cell-equal? b c))

                (:= c (div (^ c) 5))

          (writeln-int (^ a))

                (writeln-int (^ b))

                (^ c))))))

Imperative Factorial in Java

public static int fact (int n) {

  int ans = 1;

  while (n > 0) {

    // Order of assignments is critical!

    ans = n * ans;

    n = n - 1;

  }

  return ans;

}
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Imperative Factorial in HOILEC

(bindrec

  ((fact (abs (n)

           (bindpar ((num (cell n))

                     (ans (cell 1)))

             (bindrec

               ((loop (abs ()

                  (if (= (^ num) 0)

                      (^ ans)

                      (seq

                        (:= ans (* (^ num) (^ ans)))

                        (:= num (- (^ num) 1))

                        (loop)))))

                (loop))))))

   . . . body of outer bindrec . . . )

Mutable Stacks in HOILEC
(bindpar

  ((stack-create (abs () (cell (empty)))

   (stack-empty? (abs (stk) (empty? (^ stk))))

   (top (abs (stk) (head (^ stk))))

   (push! (abs (val stk)

            (:= stk (prepend val (^ stk)))))

   (pop! (abs (stk)

           (if (stack-empty? stk)

               (error “Attempt to pop empty stack”)

               (bind elt (top stk)

                 (seq (:= stk (tail (^ stk)))

                      elt))))))

  (bind ((s (stack-create)))

    (seq (push! 2 s) (push! 3 s) (push! 5 s)

         (+ (pop! s) (pop! s))))
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Input/Output in HOILEC
(read-char)
Consumes and returns the next character from the standard input stream. Returns the

distinguished end-of-file value if the standard input stream is empty.

(read-line)
Consumes the sequence of characters up to and including the next newline

character, and returns a string of those characters (excluding the final newline).
Returns the distinguished end-of-file value if the standard input stream is empty.

(read-int)
Consumes any whitespace followed by an optional + or - sign and a nonempty

maximal sequence of digits, and returns the integer corresponding to those digits.
Returns the distinguished end-of-file value if the standard input stream is empty.

(eof? val)
Returns true for the distinguished end-of-file value and false for all other values.

(write-char val) Writes the character val to the standard output stream.

(write-int val)
Writes the character representation of the integer val to the standard output stream.

(write-string val)
Writes the character representation of the string val to the standard output stream.

Also: writeln-char, writeln-int, writeln-string

I/O Example: Uppercasing all chars in a file
HOILEC program:
  (program ()

    (bindrec ((loop ()

                (bind c (read-char)

                  (if (eof? c)

                      ()

                      (seq ;; Assume char-uppercase fcn

                        (write-char (char-uppercase c))

                        (loop))))))

      (loop)))

C program:
  char c;

  while ((c = getchar()) != EOF) {

    // Assumes auxiliary char_upper function

    putchar(char_upper(c));

  }
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“Functions” with State: Counters

How can we use cells to program the following behavior?:

(bind make-counter definition-goes-here

  (bind a (make-counter)

    (seq (write-int (a)) ; prints 1

         (write-int (a)) ; prints 2

         (bind b (make-counter)

           (seq (write-int (b)) ; prints 1

                (write-int (a)) ; prints 3

                (write-int (b)) ; prints 2

                )))))

Each call to make-counter returns what is effectively a new object
(in the object-oriented sense).  Functions + side effects give
much of the power of object-oriented programming --
something we explore later in the semester

Definition of make-counter

(abs () ; This abstraction called to create counter

  (bind count ((cell 0))

    (abs () ; This abstraction called to increment counter

      (seq (:= count (+ (^ count) 1))

           (^ count)))))
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Environment diagram for  make-counter example

Draw the environment diagram here:

Promises
How can we implement Scheme-like promises within HOILEC?

(delayed thunk)

Takes a thunk (nullary function) and returns a promise to evaluate that
thunk at a later time.

(force promise)

If the promise’s thunk has not yet been evaluated, evaluate it and return and
remember its value. If the promises thunk has been evaluated, return the
remembered value.

Example:
(bind p (delayed (abs ()

                   (seq (write-string “Adding”)

                        (+ 1 2))))

  (* (force p) (force p))
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Promise Implementation 1
(bindpar

  ((delayed

     (abs (thunk)

       (list thunk (cell false) (cell ()))))

   (force

     (abs (promise)

       (if (^ (second promise))

           (^ (third promise))

           (bind value ((first-promise)) ; dethunk!

             (seq (:= (second promise) true)

                  (:= (third promise) value)

                  value))))))

  … body of bindpar … )

Promise Implementation 2
(bindpar

  ((delayed

     (abs (thunk)

       (bindpar ((flag (cell false))

                 (value (cell ())))

         (abs ()

           (if (^ flag)

               (^ value)

               (seq (:= value (thunk))

                    (:= flag true)

                    (^ value)))))))

   (force (abs (promise) (promise)))

  … body of bindpar … )
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HOILIC = HOFL + Implicit Mutable Cells

HOILIC is a version of of HOFL in which:

• All variables I are bound to cells.

• Variable references I denote the current contents of a cell.

•  (<- I Enew) changes the contents of the cell designated by I to be the
value of Enew .

Example:  (bindpar ((a 2) (b 3)) (seq (<- a (+ a b)) a))

Similar to Other Languages:
• Scheme:  (let ((a 2) (b 3)) (begin (set! a (+ a b)) a))

• Java/C:  {int a = 2; int b = 3; a = a + b; use a}

• Pascal:  begin var a: int := 2;

•             var b : int := 3;
            a := a + b;

•             use a end

make-counter Revisited
• HOILIC:

   (bind make-counter
         (abs ()
           (bind ((count 0))
             (abs (lambda ()
               (seq (<- count (+ count 1))
                    count))))
    body of bind)

• Scheme:
  (define make-counter
    (lambda ()
      (let ((count 0))
        (lambda ()
          (begin (set! count (+ count 1))
                 count))))))
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Other  Mutable Structures

• Scheme:
– Mutable list node slots: can be changed via set-car! , set-cdr!

– Vectors with mutable slots: can be changed by vector-set!

• ML: In addition to ref cells, supports arrays with mutable slots
and file operations. But all variables and list nodes are
immutable!

• C and Pascal support mutable records and array variables,
which can be stored either on the stack or on the heap. Stack-
allocated variables are sources of big headaches (we shall see
this later in the semester).

• Almost every language has stateful operations for reading
from/writing to files.

Advantages of Side Effects

• Can maintain and update information in a modular way.
Examples:
– Report the number of times the base case is reached in a recursive SML

Fibonacci function.  Much easier with cells than without!

– Using fresh() to generate new type variabes in the type reconstructor,
rather than (1) single-threading counter through computation or (2) using
finding identifier not in set.

– Tracing/untracing functions in Scheme.

– Organizing interpreter to allow modular addition of new constructs. E.g:
in Scheme implementations of interpreters, could have:

  (define-desugarer! ‘scand
   (lambda (sexp)
     (list ‘if (second sexp) (third sexp) falsity)))

• Computational objects with local state are nice for modeling the
real world. E.g., gas molecules, digital circuits, bank accounts



11

Disadvantages of Side Effects
• Lack of referential transparency makes reasoning harder:

– Referential transparency: evaluating the same expression in the same
environment always gives the same result.

– In language without side effects, (+ E E) can always be safely
transformed to (* 2 E). But not true in the presence of side effects!

– Even in a purely functional call-by-value language, non-termination is a
kind of side effect. Are the following Scheme expressions always equal?

(let ((I E3)) (if E1 E2 I)) <=?=> (if E1 E2 E3)

• Aliasing makes reasoning in the presence of side effects
particularly tricky. E.g. HOILEC example:
  (+ (^ a) (seq (:= b (+ 1 (^ b))) (^ a))

  <=?=> (seq (:= b (+ 1 (^ b))) (* 2 (^ a)))

• Harder to make persistent structures (e.g., aborting a
transaction, rolling back a database to a previous saved point).


