|mperative Programming

Handout #37
CS251 Lecture 28
April 9, 2002

Functional vs. Imperative Programming

» Functional Programming (e.g., Scheme, ML, Haskell)
— Heavy use of first-class functions

— Immutablility/persistence: variables and data structures do not change over
time.

— Expressions denote values
* Imperative Programming (e.g., C, Pascal, Fortran, Ada; core of C++, Java)

— Mutability/side effects: variables, data structures, procedures, input/output
streams can change over time:

— Often adistinction between expressions (which denote values) and statements
(which perform actions). In some languages, expressions do both.

— Imperative languages often have non-local control flow features (gotos, non-
local exits, exceptions). We will study these | ater.

» Combining functiona and imperative programming

— Scheme and ML do have imperative features, but used sparingly. They are
“mostly functional” languages.

— First-class functions + side effects are at the core of many important
programming idioms.

HOILEC = HOFL + Explicit Mutable Cells
HOILEC is HOFL extended with the following constructs:

(cell E) Returnacell whose contentsisthe value of E.
(cell-ref E) or (™ E) Returncurrent contents of the cell designated by E.

(cell-set! Eyy Enew) O (:= Egopy Enew) Changethe contents of the cell
designated by E_.,, tobethevaueof E , Returns() (the unit value)

(cell-equal ? E; E,) Returntrueif E; and E, arethe same cell and false
otherwise.

(cell? E) Returntrueif thevalue of E isacell and false otherwise.

HOILEC cellsmodel ML’srefs:

HOILEC ML
(cell E) (ref E)
(cell-ref E) (! E)
(Cel I-set! Ecell Enew) (Ecell = Enew)
(cell-equal? E; E) (E, =E)
(cell? E) No such operation

Sequential Execution

In the presence of side effects, order of evaluation isimportant!
HOILEC has the following for sequentializing expressions:

(seq E; --- E)
EvaluateE; = E, inorder and return the value of E,,

Notes:

e seq can be considered sugar for bi ndseq:

(seq E, ... E))
desugarsto (bi ndseq ((1, E;) --- (1, E)) 1)
;1. nmust be fresh!

+ HOILEC's(seq E, .-. E,) correspondsto:
— Scheme's(begin E, ... E)

Mutable Cells: Example

(bind a (cell (+ 3 4))
(seq (witeln-int (~ a))
(:=a(* 2 (" a))
(witeln-int (~ a))
(:=a(+1("a))
(witeln-int (~ a))
(bind b (cell (~ a))
(bind ¢ b
(seq (witeln-int (cell-equal? a b))
(witeln-int (cell-equal? b c))
(:=c¢ (div (* c) 5))
(witeln-int (~ a))
(witeln-int (~ b))
(" ¢))))))

Imperative Factorial in Java

public static int fact (int n) {
int ans = 1;
while (n > 0) {
// Order of assignments is critical!
ans = n * ans;
n=n-1;
}

return ans;

}

Imperative Factorial in HOILEC

(bi ndrec
((fact (abs (n)
(bi ndpar ((num (cell n))
(ans (cell 1)))
(bi ndrec
((loop (abs ()
(if (= (" num 0)
(™ ans)
(seq
(:=ans (* (» num (™ ans)))
(:= num (- (» num 1))
(loop)))))

(loop))))))
. body of outer bindrec . . .)

Mutable Stacksin HOILEC

(bi ndpar
((stack-create (abs () (cell (enpty)))
(stack-empty? (abs (stk) (empty? (”~ stk))))
(top (abs (stk) (head (" stk))))
(push! (abs (val stk)
(:= stk (prepend val ("~ stk)))))
(pop! (abs (stk)
(if (stack-empty? stk)
(error “Attenpt to pop enpty stack”)
(bind elt (top stk)
(seq (:= stk (tail (~ stk)))
elt))))))
(bind ((s (stack-create)))
(seq (push! 2 s) (push! 3 s) (push! 5 s)

(+ (pop! s) (pop! s))))

Input/Output in HOILEC

(read-char)

Consumes and returns the next character from the standard input stream. Returns the
distinguished end-of-file value if the standard input stream is empty.

(read-1ine)

Consumes the sequence of characters up to and including the next newline

character, and returns a string of those characters (excluding the final newline).
Returns the distinguished end-of-file value if the standard input stream is empty.

(read-int)
Consumes any whitespace followed by an optional + or - sign and a nonempty

maximal sequence of digits, and returns the integer corresponding to those digits.
Returns the distinguished end-of-file value if the standard input stream is empty.

(eof ? val)
Returns true for the distinguished end-of-file value and false for all other values.

(write-char val) Writesthe character val to the standard output stream.

(wite-int val)
Writes the character representation of the integer val to the standard output stream.

(wite-string val)
Writes the character representation of the string val to the standard output stream.

Also:writel n-char,witeln-int,witeln-string

|/O Example: Uppercasing all charsin afile

HOILEC program:
(program ()
(bindrec ((loop ()
(bind ¢ (read-char)
(if (eof? c)
()
(seq ;; Assune char-uppercase fcn
(wite-char (char-uppercase c))
(loop))))))
(loop)))
C program:
char c;
while ((c = getchar()) !'= EOF) {
// Assumes auxiliary char_upper function
put char (char_upper(c));

“Functions’ with State: Counters

How can we use cells to program the following behavior?:

(bi nd rmake-counter definition-goes-here

(bind a (rmake-counter)
(seq (wmite-int (a)) ; prints 1
(wite-int (a)) ; prints 2
(bind b (make-counter)
(seq (wite-int (b)) ; prints 1
(wite-int (a)) ; prints 3
(wite-int (b)) ; prints 2
)))))

Each call to make-counter returns what is effectively a new object
(in the object-oriented sense). Functions + side effects give
much of the power of object-oriented programming --
something we explore later in the semester

Definition of rake- count er

(abs () ; This abstraction called to create counter
(bind count ((cell 0))
(abs () ; This abstraction called to increnent counter
(seq (:= count (+ (”~ count) 1))

(" count)))))

Environment diagram for nake- count er example

Draw the environment diagram here:

Promises
How can we implement Scheme-like promises within HOILEC?

(del ayed thunk)

Takes athunk (nullary function) and returns a promise to evaluate that
thunk at alater time.

(force prom se)

If the promise’ s thunk has not yet been evaluated, evaluate it and return and
remember its value. If the promises thunk has been evaluated, return the
remembered value.

Example:
(bind p (delayed (abs ()
(seq (wite-string “Adding”)
(+12))))
(* (force p) (force p))

Promise Implementation 1

(bi ndpar
((del ayed
(abs (thunk)
(list thunk (cell false) (cell ()))))
(force
(abs (prom se)
(if (™ (second pronise))
(™ (third promnise))
(bind value ((first-pronise)) ; dethunk
(seq (:= (second prom se) true)
(:= (third prom se) val ue)
value))))))
.. body of bindpar ..)

Promise Implementation 2

(bi ndpar
((del ayed
(abs (thunk)
(bindpar ((flag (cell false))
(value (cell ())))

(abs ()
(if (~ flag)
(™ val ue)

(seq (:= value (thunk))
(:=flag true)
(" value)))))))
(force (abs (promnise) (pronise)))
.. body of bindpar ..)

HOILIC = HOFL + Implicit Mutable Cells

HOILIC isaversion of of HOFL in which:
o All variables 1 are bound to cells.
* Variablereferences 1 denote the current contents of aceall.

* (<1 Enew)
valueof E,,, -

changes the contents of the cell designated by 1 to be the

Example: (bindpar ((a 2) (b 3)) (seq (<- a (+ a b)) a))

Similar to Other Languages:

e Scheme (let ((a 2) (b 3)) (begin (set! a (+ a b)) a))
e JavalC: {int a=2; int b =3, a=a+ b; use a}
e Pascal: begin var a: int := 2;

. var b : int := 3;
a:=a+ b;
. use a end

make- count er Revisited

HOILIC:

(bi nd make-counter
(abs ()
(bind ((count 0))
(abs (Il anmbda ()
(seq (<- count (+ count 1))
count))))
body of bind)

Scheme:

(define make-counter
(lambda ()
(let ((count 0))
(lambda ()
(begin (set! count (+ count 1))

count))))))

Other Mutable Structures

» Scheme:

— Mutablelist node dots: can be changed viaset - car! , set - cdr!
— Vectors with mutable sots: can be changed by vect or - set !

e ML: In addition to ref cells, supports arrays with mutable slots
and file operations. But all variables and list nodes are
immutable!

» C and Pascal support mutable records and array variables,
which can be stored either on the stack or on the heap. Stack-
allocated variables are sources of big headaches (we shall see
thislater in the semester).

» Almost every language has stateful operations for reading
from/writing to files.

Advantages of Side Effects

» Can maintain and update information in a modular way.
Examples:

— Report the number of times the base caseis reached in arecursive SML
Fibonacci function. Much easier with cells than without!

— Using fresh() to generate new type variabes in the type reconstructor,
rather than (1) single-threading counter through computation or (2) using
finding identifier not in set.

— Tracing/untracing functions in Scheme.

— Organizing interpreter to allow modular addition of new constructs. E.g:
in Scheme implementations of interpreters, could have:

(define-desugarer! ‘scand
(lanbda (sexp)
(list “if (second sexp) (third sexp) falsity)))

» Computational objects with local state are nice for modeling the
real world. E.g., gas molecules, digital circuits, bank accounts

Disadvantages of Side Effects

Lack of referential transparency makes reasoning harder:

— Referential transparency: evaluating the same expression in the same
environment always gives the same resullt.

— Inlanguage without side effects, (+ E E) can always be safely
transformed to (* 2 E). But not true in the presence of side effects!

— Eveninapurely functional call-by-value language, non-terminationis a
kind of side effect. Are the following Scheme expressions always equal ?

(let ((I E)) (if E E, 1)) <=2=> (if E, E, E)

Aliasing makes reasoning in the presence of side effects
particularly tricky. E.g. HOILEC example:
(+ (M a) (seq (:=b (+1 (" Db))) (" a))
<=?=> (seq (:=b (+ 1 (" b)) (* 2 (" a)))

Harder to make persistent structures (e.g., aborting a
transaction, rolling back a database to a previous saved point).

11

