
CS251 Jeopardy
Spring 2002

CS251 Jeopardy Spring’02 – p.1/42



Gameboard

Data Naming Laziness Xforms Imperative Control Types Potpourri

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

CS251 Jeopardy Spring’02 – p.2/42



Data 1

What data structure is commonly used in interpreters to
associate names with values?

Back

CS251 Jeopardy Spring’02 – p.3/42



Data 2

What feature in Scheme, ML, and Java is responsible for
reclaiming storage used by values that are no longer
accessible from the program?

Back

CS251 Jeopardy Spring’02 – p.4/42



Data 3

ML’s datatype and Haskell’s data construct are examples
of "sum-of-product" data type declarations. What are
traditional names for "sum" and "product " in programming
languages?

Back

CS251 Jeopardy Spring’02 – p.5/42



Data 4

What is the value of the following ML program?

let val yourMom = [[1,2], [3,4,5,6,7], [8]]
in map (foldr (fn (_,x) => 1+x) 0) yourMom
end

Back

CS251 Jeopardy Spring’02 – p.6/42



Data 5

What problem does invoking the following C function lead
to?

int* elts (int c, int n) {
int a[n];
int i;
for (i = 0; i < n; i++) {
a[i] = c*i;

}
return a;

}

Extra: : How can the problem be fixed?

Back

CS251 Jeopardy Spring’02 – p.7/42



Naming 1

List all of the free variables of the following HOFL
expression:

(abs (a)
(a b (abs (b) (+ b c))))

Back

CS251 Jeopardy Spring’02 – p.8/42



Naming 2

List all of the following languages that are block structured:

Pascal

C

Java

Scheme

ML

Back

CS251 Jeopardy Spring’02 – p.9/42



Naming 3

The following is a legal program in both FOBS and HOFL.
In FOBS, it denotes the factorial function, while in HOFL it
does not. What programming language feature accounts for
the difference in meaning between the two languages?

(program (n)
(funrec ((fact (fact)

(if (= fact 0)
1
(* fact (fact (- fact 1))))))

(fact n)))

Back

CS251 Jeopardy Spring’02 – p.10/42



Naming 4

Give the value of the following expression in both lexically
scoped and dynamically scoped versions of Scheme:

(let ((a 1)
(b 2))

(let ((f (let ((a 10))
(lambda () (+ a b)))))

(let ((b 20))
(f))))

Back

CS251 Jeopardy Spring’02 – p.11/42



Naming 5

Give the value of the following Scheme expression under
all four parameter passing mechanisms: call-by-value,
call-by-name, call-by-need, call-by-reference. Assume
procedure arguments are evaluated in left-to-right order.

(let ((a 1))
(let ((b a))

(let ((c (begin (set! a (* a 2) a))))
(begin (set! b 10)

(+ a (+ c c))))))

Back

CS251 Jeopardy Spring’02 – p.12/42



Laziness 1

Which one of the following does not belong:

lazy data

call-by-value

memoization

call-by-need.

Back

CS251 Jeopardy Spring’02 – p.13/42



Laziness 2

In his paper "Why Functional Programming Matters", John
Hughes argues that laziness is important because it
enhances something? What?

Back

CS251 Jeopardy Spring’02 – p.14/42



Laziness 3

Below are two definitions of an if0 construct: the first
defined by desugaring, the second defined as a function:

(1) (if0 Enum Ezero Enonzero)
desugars to (if (= Enum 0) Ezero Enonzero)

(2) (define if0
(lambda (Enum Ezero Enonzero)

(if (= Enum 0) Ezero Enonzero)))

List all of the following parameter-passing mechanisms
under which the two definitions are equivalent:

call-by-value call-by-name call-by-need

Back

CS251 Jeopardy Spring’02 – p.15/42



Laziness 4

What are the elements of the list returned by evaluating
the following Haskell expression?

take 5 (scanl (+) 0 elts)
where elts = 1 : (map (2 *) elts)

Back

CS251 Jeopardy Spring’02 – p.16/42



Laziness 5

What is the value of the following statically-scoped
call-by-value Scheme expression? Assume left-to-right
operand evaluation.

(let ((n 0))
(let ((inc! (lambda (x)

(begin (set! n (+ n x)) n))))
(let ((inc1 (lambda () (inc! 1)))

(inc2 (delay (inc! 2))))
(+ (* (inc1) (force inc2))

(* (inc1) (force inc2))))))

Extra: : What if the operand evaluation order is right-to-left?

Back

CS251 Jeopardy Spring’02 – p.17/42



Xforms 1

What common program transformation have we studied
that Alan Perlis once quipped could cause "cancer of the
semi-colon"?

Back

CS251 Jeopardy Spring’02 – p.18/42



Xforms 2

What is the name of a transformation that can transform
an ML function of type

int * char -> bool

to a function of type

int -> char -> bool

Back

CS251 Jeopardy Spring’02 – p.19/42



Xforms 3

Consider the following program transformation:

(+ E E) => (* 2 E)

For each of the following programming paradigms, indicate
whether the above transformation is safe - that is, it
preserves the meaning of the expression for all possible
expressions E.

purely functional

imperative

object-oriented

Back

CS251 Jeopardy Spring’02 – p.20/42



Xforms 4

Consider the following transformation in an imperative
version of Scheme:

((lambda (x) 3) E) => 3

List all of the following parameter passing mechanisms for
which the above transformation is safe - that is, it preserves
the meaning of the expression for all possible expressions
E

.

call-by-value

call-by-name

call-by-need

call-by-reference

Back
CS251 Jeopardy Spring’02 – p.21/42



Xforms 5

In Scheme, the special form (or E1 E2) first evaluates
E1 to a value V1 . If V1 is not false, it is returned without
evaluating E2 . If V1 is false, the value of E2 is returned. Bud
Lojack suggests the following desugaring rule for
(or E1 E2):

(or E1 E2)
desugars to

(let ((x E1)) (if x x E2))
Unfortunately, this desugaring has a bug. Give a concrete
expression in which Bud’s desugaring fails to have the right
meaning.

Back

CS251 Jeopardy Spring’02 – p.22/42



Imperative 1

List all of the following languages in which a variable is
always bound to an explicit mutable cell.

Scheme

ML

Java

Haskell

C

Back

CS251 Jeopardy Spring’02 – p.23/42



Imperative 2

What programming language property corresponds to the
mathematical notion of "substituting equals for equals"
(Functional languages have it; imperative languages don’t.)

Back

CS251 Jeopardy Spring’02 – p.24/42



Imperative 3

What is the value of executing f(5), where f is the
following C function?

int f (int n) {
int ans = 1;
while (n > 0) {
n = n - 1;
ans = n * ans;

}
return ans;

}

Back

CS251 Jeopardy Spring’02 – p.25/42



Imperative 4

What is the value of executing g(1,2) in the context of
the following C definitions?

void h (int x, int* y) {
x = x + *y;
*y = *y + x;

}

int g (int a, int b) {
h(a, &b);
return a * b;

}

Back
CS251 Jeopardy Spring’02 – p.26/42



Imperative 5
What is the value of the following Scheme program?
Assume operands are evaluated from left to right. (Hint:
draw environments!)

(let ((f (let ((a 0))

(lambda ()

(begin (set! a (+ a 1))

(let ((b 0))

(lambda ()

(begin (set! b (+ a b))

b))))))))

(let ((p (f))

(+ (p)

(let ((q (f))

(+ (q)

(+ (p) (q))))))

Back CS251 Jeopardy Spring’02 – p.27/42



Control 1

Name the property that allows Scheme to perform
iterations in constant space without explicit looping
constructs.

Back

CS251 Jeopardy Spring’02 – p.28/42



Control 2

Which one of the following most closely models Pascal’s
goto construct?

Scheme’s error construct

Scheme’s call-with-current-continuation
construct

ML’s raise construct

Java’s try/catch construct

Java’s break construct

Back

CS251 Jeopardy Spring’02 – p.29/42



Control 3

What is the value of the following expression in a version
of Scheme supporting raise and handle?

(handle err (lambda (y) (+ y 200))

(let ((f (lambda (x) (+ (raise err x) 1000))))

(handle err (lambda (z) (+ z 50))

(f 4)))

Extra: what if the handles are replaced by traps?

Back

CS251 Jeopardy Spring’02 – p.30/42



Control 4

Consider the following procedure in a version of Scheme
supporting label and jump:

(define test

(lambda (x)

(+ 1 (label a

(+ 20 (label b

(+ 300 (jump a

(label c

(if (> x 0)

(+ 4000 (jump c x))

(jump b x)))))))))))

What is the value of the expression
(+ (test 0) (test 5))? Assume operands are
evaluated left-to-right.

Back

CS251 Jeopardy Spring’02 – p.31/42



Control 5

What is the value of the following expression in a version
of Scheme supporting label and jump?

(let ((twice (lambda (f) (lambda (x) (f (f x))))))

(let ((g (label a (lambda (z) (jump a z)))))

(((g twice) 1+) 0)))

Back

CS251 Jeopardy Spring’02 – p.32/42



Types 1

Name a "real-world" statically-typed language that does
not require explicit types.

Back

CS251 Jeopardy Spring’02 – p.33/42



Types 2

What feature is lacking in Java’s type system that makes it
impossible to write a general Scheme or ML style map
function in Java?

Back

CS251 Jeopardy Spring’02 – p.34/42



Types 3

What type would the ML type reconstructer infer for the
following function definition?

fun some pred []= NONE
| some pred (x::xs) =

if (pred x)
then SOME(x)
else some pred xs

Back

CS251 Jeopardy Spring’02 – p.35/42



Types 4

Write an explicitly typed HOFLEMT expression that has
the following type. The function must actually use each of
its arguments.

(-> (int (-> (int) bool)) bool)

Back

CS251 Jeopardy Spring’02 – p.36/42



Types 5

Translate the following (implicitly typed) HOFLIPT
expression into an explicitly typed HOFLEPT expression
with the most general possible type.

(abs (f x) (f x x))

Extra: What is the type of your HOFLEPT expression?

Back

CS251 Jeopardy Spring’02 – p.37/42



Potpourri 1

Complete the following Guy Steele poem by filling in the
???:

A one slot cons is called a ???
A two-slot cons makes lists as well
And I would bet a coin of bronze
There isn’t any three-slot cons.

Back

CS251 Jeopardy Spring’02 – p.38/42



Potpourri 2

Who was the inventor of the lambda calculus, a formal
system upon which functional programming is based?

Back

CS251 Jeopardy Spring’02 – p.39/42



Potpourri 3

Is it possible to write an interpreter for an imperative
language in a purely functional language?

Back

CS251 Jeopardy Spring’02 – p.40/42



Potpourri 4

Fill in the ??? in the following Norman Adams quote:
“Objects are a poor man’s ???”.

Back

CS251 Jeopardy Spring’02 – p.41/42



Potpourri 5

List five properties that values must have in order to be
considered "first-class".

Back

CS251 Jeopardy Spring’02 – p.42/42


	Gameboard
	Data 1
	Data 2
	Data 3
	Data 4
	Data 5
	Naming 1
	Naming 2
	Naming 3
	Naming 4
	Naming 5
	Laziness 1
	Laziness 2
	Laziness 3
	Laziness 4
	Laziness 5
	Xforms 1
	Xforms 2
	Xforms 3
	Xforms 4
	Xforms 5
	Imperative 1
	Imperative 2
	Imperative 3
	Imperative 4
	Imperative 5
	Control 1
	Control 2
	Control 3
	Control 4
	Control 5
	Types 1
	Types 2
	Types 3
	Types 4
	Types 5
	Potpourri 1
	Potpourri 2
	Potpourri 3
	Potpourri 4
	Potpourri 5

