CS251 Programming L anguages Handout #10
Prof. Lyn Turbak February 1, 2002
Welledley College

PROBLEM SET 1
DueFriday, February 8

Overview: The purpose of this assignment isto give you practice understanding and writing
some simple Scheme programs. Thisisalong assignment that isworth 120 points. It is
strongly recommended that you (1) start early and (2) work with a partner. In particular
you should plan to spend several days on therecursivelist functionsin Problem 3.

Reading: An Introduction to Scheme (Handout #7) and Scheme Data Structures (Handout #8);
SCP1.1—1.2; 2.1, 2.2—2.2.2, 2.3. Continue to study the documentation on Linux and Emacs
(Handout #6) and MIT Scheme (Handouts #4) as well as the documentation on CV S (Handout
#9).

Submission: Problems 1 and 2 are pencil-and-paper problems that only need to appear in your
hardcopy submission. Problem 3 involves writing seven Scheme functions in the file ps1-

3. scm For this problem, your hardcopy submission should be your final version of psi-3. scm
Thisfile should also be your softcopy submission, which you should copy to the directory
~cs251/ dr op/ ps1/ username, Where username iSyour username.

Please attach to your hardcopy a problem set header sheet (which can be found at the end of this
assignment) indicating the time that you (and your partner, if you are working with one) spent on
the parts of the assignment. If you work with a partner, you need only submit a single hardcopy
and softcopy; please indicate on top of the problem set header sheet where the softcopy can be
found.

Problem 1[20]: Scheme Evaluation

On the next page are a sequence of Scheme expressions and definitions. Show the details of how
each expression is evaluated according to the substitution model and indicate the final results of
each expression. Assume that the expressions are evaluated in order. If evaluating an expression
gives an error, say so, and indicate what is the cause of the error. Y ou should figure out the
answers without using the computer, but may use a Scheme interpreter to check your answers.

Note: Evaluating a definition does not return avalue, but instead associates a name with avalue.
For each definition below, indicate the value that is associated with the name.

(define a 5)

(define b (* a a))

(+(* 2a) (- ba))

(2 * a)

(define average (lanbda (x y) (/ (+ xvy) 2)))
(average (* 2 a) (- b a))

(define c 'h)

(list a b c)

(list "a'b 'c)

(cons a h)

(cons a b c)

(a b c)

("a'b 'c)

'"(a b c)

(define apply-to-3-and-4 (lanbda (f) (f 3 4)))
(appl y-to-3-and-4 +)

(appl y-to-3-and-4 *)

(appl y-to-3-and-4 aver age)

(appl y-to-3-and-4 (lanbda (x y) x))
(apply-to-3-and-4 (if (> 1 2) + *))
(apply-to-3-and-4 (lanmbda (x y) (if (< xvy) + *)))
(define add-a (lanmbda (x) (+ x a)))

(add-a 100)

(define a 17)

(add-a 100)

b

(define try (lanbda (a) (add-a (* 2 a))))

(try 100)

Problem 2[20]: Box-and-pointer diagrams

a. [15] Consider the following box-and-pointer diagram for the list structure named a:

a—=f || T [T»[a

v v

w
I

— |

112 5| —+—®1 6

i.[6] Using car and cdr, write Scheme expressions that extract the numbers 1 through 6 from
a.

ii. [4] Write down the printed representation for a.

iii.[5] Give a Scheme expression that usescons and | i st to create the structure depicted in
the diagram.

Y ou may wish to use a Scheme interpreter to check that your answersto i, ii, and iii are
consistent.

b. [5] Consider the following Scheme definitions:
(define a (list "+ (* 2 3) '(- 3 4)))
(define b 'a)
Draw the box-and-pointer diagram corresponding to the value of the following expression:

(cons (list "a a) (cons '"b b))

Problem 3[80]: List and Tree Recursion
This problem involves defining recursive functions that manipulate lists and treesin Scheme.

To do this problem, you will need to use several filesthat are in the CV S-controlled CS251
repository. Once you have set up your local CV S repository (see Handout #9 for details), you can
get access to these files by executing the following in a Unix shell:

cd ~/cs251
cvs update -d

Indeed, every time you log in to a Linux machine to work on an assignment, you should execute
the above commands to ensure that you have the most up-to-date versions of the problem set
materials. Executing the above commands will create the local directory ~/ cs251/ ps1
containing two files:

psi1- 3. scm Thisfile contains skeletons for each of the procedures you are asked to define.
Y ou should flesh out each of the skeletons as you do the problems. In many of the problems
it will also be helpful to define additional auxiliary procedures. Y ou are welcome to use any
procedures defined in class if you find them helpful.

ps1- 3-test.scm Thisfile contains code for testing each of your functions on some simple
test cases. Y ou can test the function in part zzz by loading this file and evaluating the
Scheme form (t est - zzz) . You can test all seven functions by evaluating (t est - al 1) . Note
that even if your function passes the test cases, it is not guaranteed to be correct; you are
encouraged to extend the test cases in the testing file.

Below are the specifications for seven functions. Write definitions for each of the seven
functions. Thinking carefully about your strategy before you start coding will save you lots of
time! The divide-conquer-and-glue strategy you are familiar with from CS111 and CS230 can
be use to solve all problems.

a[10]

b [10]

c[10]

(sumnul tiples-of-3-0or-5 m n)

Assumem and n are integers. Returns the sum of all integers from m up to n (inclusive)
that are multiples of 3 and/or 5.

> (sumnultiples-of-3-or-5 0 10)
33 ;7 3+5+6+9+10

> (sumnultiples-of-3-or-5 -9 12)
22

> (sumnultiples-of-3-or-5 18 18)
18

> (sumnultiples-of-3-or-5 10 0)
0 ; The range “10 up to 0” is enpty.

(all-contain-nmultiple? n intss)

Assumethat nisaninteger and intss is a list of lists of integers. Returns#t
if each list of integersin intss contains at |east one integer that is a multiple of n; returns
#f if somelist of integersin intss does not contain a multiple of n. (Note that some
Scheme interpreters use the empty list () to stand for #f .)

> (all-contain-multiple? 5 ' ((17 10 12) (25) (3 7 5)))
#t

> (all-contain-nmultiple? 3 '((17 10 12) (25) (3 7 5)))
#f

> (all-contain-nultiple? 3 '())
#t

(unzip Ist)

Assumethat Ist isalist of length len whose ith element isalist of theform (aj bj) .
Return alist of theform (Ist1l Ist2) where Istl and Ist2 are length 1en lists whose
ith elementsareaj and bj, respectively.

> (unzip " ((1 a) (2 Db) (3¢c)))
((123) (abc))

> (unzip '((1 a)))
((1) (a))

> (unzip " ())
(0 0)

d [10] (cartesian-product Istl Ist2)

Returnsalist of al duples(a b) where a ranges over the elements of I1st1 and b ranges
over the elements of I1st2. The duples should be sorted first by the aentry (relative to
the order in 1st1) and then by the b entry (relative to the order in I1st2).

> (cartesian-product '(1 2) '(a b c))
((1a (1b) (1c) (2a) (2b) (2c))

> (cartesian-product '(2 1) '(c a b))
((2c) (2a (2b) (1c) (1a) (1Db))

> (cartesian-product '(c ab) ' (2 1))
((c 2) (¢ 1) (a2) (al) (b2) (b1l))

> (cartesian-product '(1) '(a))

((1 a))

> (cartesian-product '() '(a b c))

0

e[10] (count-atoms sexp)
Return the number of atoms (non-pairs) that appear in the s-expression sexp .

\

(count-atons '((a (b c)) d ((e f) g)))

(count-atons '(a b a b))

BV

\

(count-atons 'a)

(count-atons '())

o Vv

Y our definition should have the following form:

(define count-atons
(1 anrbda (sexp)
(if (null? sexp)
expressionl
(if (aton? sexp) expression2 expression3)))

where at on® istrue of non-pairs:

(define (atonf val)
(not (pair? val)))

f[10] (deep-reverse sexp)
Returns an s-expression whose elements are those of sexp reversed at every level.

> (deep-reverse '((a (b c)) d ((e f) g)))
((g (f e)) d ((c b) a))

> (deep-reverse '(a b c d))
(d c b a)

> (deep-reverse 'a)
a

> (deep-reverse '())

0

Y our solution should have the form

(define deep-reverse
(1 ambda (sexp)
(if (null? sexp)
expressionl
(if (atonf? sexp) expression2 expression3)))

You may find it helpful to use the snoc procedure in your definition (thisisjust
post pend from CS111/CS230!)

(define (snoc Ist elt)
(if (null? Ist)
(list elt)
(cons (car Ist) (snoc (cdr Ist) elt))))

g[20] (pernutations Ist)

Assumethat Ist isalist of distinct elements (i.e., no duplicates). Returns alist of al the

permutations of the elements of Ist. The order of the permutations does not matter.

> (pernmutations ‘())

(0)

> (permutations ‘(1))

((1))

> (permutations ‘(1 2))
((12) (21)) ; Oder doesn’t matter

> (permutations ‘(1 2 3))

((123) (132) (213) (231) (312 (321)) ; Oder doesn't matter
> (permutations ‘(1 2 3 4))

((1234) (1243 (1324 (1342) (1423 (1432

(2134 (2143) (2314 (2341) (2413 (2431)

(3124 (3142) (3214 (3241) (3412 (3421

(4123 (4132) (4213) (4231 (4312 (4321))

; Order doesn’'t matter

Extra Credit Problem [20]: Permutationsin the presence of duplicates
This problemis optional. You should only attempt it after completing the rest of the problems.

Modify the permutations procedure from part g so that it correctly handles lists with duplicate
elements. That is, each permutation of such alist should only be listed once in the result. You
should not generate duplicate permutations and then remove them (e.g., by r enove-

dupl i cat es). Rather, you should just not generate any duplicates to begin with.

(pernutations-dup Ist))
Return alist of all the permutations of the elements of Ist.

> (permutations-dup ‘(2 1 2))
((122) (212) (221)) ; Oder doesn't matter

> (permutations-dup ‘(a b a b b))

((aabbb) (ababb) (abbab) (abbba)
(baabb) (babahb) (babba)

(bbaahb) (bbaba) (bbbaa)); Oder doesn't matter

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS251 Problem Set 1
Due Friday, February 8, 2002

Names of Team Members:
Date & Time Submitted:
Soft Copy Directory:

Collaborators (any teams collaborated with in the process of doing the problem set):

In the Time column, please estimate the total time each team member spent on the parts of this
problem set. Please try to be as accurate as possible; thisinformation will help meto design
future problem sets. | will fill out the Score column when grading your problem set.

Part Time Score

Genera Reading

Problem 1 [20]

Problem 2 [20]

Problem 3a [10]

Problem 3b [10]

Problem 3c [10]

Problem 3d [10]

Problem 3e [10]

Problem 3f [10]

Problem 3g [20]

Extra Credit [20]

Total [120]

