
1

CS251 Programming Languages Handout #12
Prof. Lyn Turbak February 8, 2002
Wellesley College

PROBLEM SET 2
Due Friday, February 15, 2002

Overview: The purpose of this assignment is to give you experience with first-class functions.
These can twist your brain a bit, so leave sufficient time to do the problems.

Reading: First-Class Functions (Handout #11); SICP 1.3; 2.2.2 -- 2.2.4. If you haven't done so
already, study the notes on debugging in the MIT-Scheme handout (#4), since this will save you
valuable time throughout the rest of the semester.

Submission: Problem 1 is a pencil-and-paper problem that only needs to appear in your
hardcopy submission. Problems 2, 3, and 4 involve writing Scheme functions in the files
adp.scm, set.scm, and church.scm within the ~/cs251/ps2 directory. For these problem, your
hardcopy submission should be your final versions of these files. These file should also be your
softcopy submission, which you should copy to the directory ~cs251/drop/ps2/username on
puma, where username is your username.

Please attach to your hardcopy a problem set header sheet (which can be found at the end of this
assignment) indicating the time that you (and your partner, if you are working with one) spent on
the parts of the assignment. If you work with a partner, you need only submit a single hardcopy
and softcopy; please indicate on top of the problem set header sheet where the softcopy can be
found.

Problem 1 [15]: Using the Substitution Model to Reason About Higher-Order Functions

Consider the following definitions:

(define apply-to-5 (lambda (f) (f 5)))

(define create-subtracter (lambda (n) (lambda (x) (- x n))))

Use the substitution model to show the evaluation of the following expressions:

a. (apply-to-5 (create-subtracter 2))
b. (apply-to-5 create-subtracter)
c. ((apply-to-5 create-subtracter) 2)
d. (create-subtracter apply-to-5)

Carefully show all details of the substitution model. If evaluating an expression gives rise to an
error, describe the nature of the error. You may use the Scheme interpreter and substitution
model interpreter to check your answers, but please do not use these until you have already tried
to figure out the answers on your own.

2

Problem 2 [50]: Aggregate Data Paradigm

Implement the following functions in terms of the higher-order list operations in
Appendix A. (These can be found in your local cvs-controlled cs251 directory in
util/list-ops.scm) You should not use recursion in any of your definitions, though
you may want to define some auxiliary (non-recursive) functions. You will recognize
most of these functions from PS1.

Flesh out all of the definitions in the file cs251/ps2/adp.scm. You can test the function
from part P by evaluating (test-P), and can test all parts by evaluating (test-adp).
(The testing functions are defined in a file adp-test.scm, which is automatically loaded
when you load adp.scm.)

a [5] (append lst1 lst2)
Return a list containing all the elements of lst1 followed by the elements of lst2.

> (append '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)

>(append '((a b) (c d)) '(e (f g) h))
((a b) (c d) e (f g) h)

b [5] (reverse lst)
Return a list containing the elements of lst in reverse order.

> (reverse '(a b c d))
(d c b a)

> (reverse '((a b) (c d)))
((c d) (a b))

> (reverse '())
()

c [5] (unzip lst)
Assume that lst is a list of length len whose ith element is a list of the
form (ai bi). Return a list of the form (lst1 lst2) where lst1 and
lst2 are length len lists whose ith elements are ai and bi, respectively.

> (unzip '((1 a) (2 b) (3 c)))
((1 2 3) (a b c))

> (unzip '((1 a)))
((1) (a))

> (unzip '())
(() ())

3

d [5] (sum-multiples-of-3-or-5 m n)

Assume m and n are integers. Returns the sum of all integers from m up to n (inclusive) that
are multiples of 3 and/or 5.

> (sum-multiples-of-3-or-5 0 10)
33 ; 3 + 5 + 6 + 9 + 10

> (sum-multiples-of-3-or-5 –9 12)
22

> (sum-multiples-of-3-or-5 18 18)
18

> (sum-multiples-of-3-or-5 10 0)
0 ; The range “10 up to 0” is empty.

e [5] (all-contain-multiple? n intss)

Assume that n is an integer and intss is a list of lists of integers. Returns #t if
each list of integers in intss contains at least one integer that is a multiple of n; returns #f if
some list of integers in intss does not contain a multiple of n. (Note that some Scheme
interpreters use the empty list () to stand for #f.)

> (all-contain-multiple? 5 '((17 10 12) (25) (3 7 5)))
#t

> (all-contain-multiple? 3 '((17 10 12) (25) (3 7 5)))
#f

> (all-contain-multiple? 3 '())
#t

f [5] (cartesian-product lst1 lst2)

Returns a list of all duples (a b) where a ranges over the elements of lst1 and b ranges
over the elements of lst2. The duples should be sorted first by the a entry (relative to
the order in lst1) and then by the b entry (relative to the order in lst2).

> (cartesian-product '(1 2) '(a b c))
((1 a) (1 b) (1 c) (2 a) (2 b) (2 c))

> (cartesian-product '(2 1) '(c a b))
((2 c) (2 a) (2 b) (1 c) (1 a) (1 b))

> (cartesian-product '(c a b) ‘(2 1))
((c 2) (c 1) (a 2) (a 1) (b 2) (b 1))

> (cartesian-product '(1) '(a))
((1 a))

> (cartesian-product '() '(a b c))
()

4

g [5] (repeated fun n)

Return the n -fold composition of the function fun.

> ((repeated (lambda (x) (+ x 1)) 5) 0)
5

> ((repeated (lambda (x) (* 2 x)) 3) 1)
8

h [5] (inner-product nums1 nums2)

Assume that nums1 is the list of numbers (a1 a2 … an) and nums2 is the list of numbers (b1
b2 … bn). (Note that both lists are assumed to have length n.) Return the sum of the products
of the corresponding elements of the two lists – i.e., the value (a1*b1) + (a2*b2) + … +
(an*bn).

> (inner-product '(1 2 3) '(4 5 6))
32 ; 4 + 10 + 18

> (inner-product '() '())
0

5

i [5] (bits int)

Assume int is a non-negative integer. Returns a list of bits (i.e, binary digits -- 0s and 1s) in
the binary representation of int, where the bits are ordered from most significant digit to
least significant.

> (bits 0)
(0)

> (bits 1)
(1)

> (bits 2)
(1 0)

> (bits 3)
(1 1)

> (bits 10)
(1 0 1 0)

> (bits 20)
(1 0 1 0 0)

> (bits 26)
(1 1 0 1 0)

> (bits 42)
(1 0 1 0 1 0)

> (bits 52)
(1 1 0 1 0 0)

Hint: Consider the sequence of numbers obtained by successive integer division by 2 (using
Scheme's quotient function) until reaching a number less than 1, as shown in the following
examples. Do you see a relationship to bits?

0: () ; Need a special case for 0.
1: (1)
2: (2 1)
3: (3 1)
10: (10 5 2 1)
20: (20 10 5 2 1)
26: (26 13 6 3 1)
42: (42 21 10 5 2 1)
52: (52 26 13 6 3 1)

6

j [5] (fast-expt base power)

The fast exponentiation procedure fast-expt can be defined recursively as follows:

;; Assume power is a non-negative integer.
(define fast-expt
 (lambda (base power)
 (if (= power 0)
 1
 (if (even? power)
 (square (fast-expt base (/ power 2)))
 (* base (square (fast-expt base (quotient power 2))))))))

(define even? (lambda (n) (= 0 (remainder n 2))))
(define square (lambda (x) (* x x)))

Unlike the naïve approach to exponentiation, which requires power multiplications, fast-
expt requires no more than 2*log2(power) multiplications. For instance, whereas 31024 takes
1024 multiplications by the naïve method, it takes only 10 multiplications via fast-expt!
Give a non-recursive definition of fast-expt using the higher-order list operators. Your
definition should perform the same number of multiplications as fast-expt. Hint: use bits
from above.

> (fast-expt 2 123)
10633823966279326983230456482242756608

> (fast-expt 2 1234)
29581122460809862906004469571610359078633968713537299223955620705065735079623892426105383
72483780501864436477590709559931208208993303817609370272124828409449413621106654437751834
95726811929203861182015218323892077355983393191208928867652655993602487903113708549402668
62452110061179427034023276609931709804888749380902312739825386061877261903500988327294112
9544640111837184

> (fast-expt 2 12345)
16417101068825821635602074166390650141012723553073588127211610308792509417139014428015903
45364394577348704191271404016671955103310856571853327210892364011930444934571162997688443
44303479235489462436380672117015123283299131391904179287678259173308536738761981139958654
88085223490844833881728901416677416986925133937982859974849291877543786473903221777805133
38829900741162462812693649337248923421345047024910400166375574298108937807651974185894775
84716543480995722533317862352141459217781316266211186486157019262080414077670264642736018
42699811352344573268085614432987697227330070339258499772920719797108394570034549409240014
71869973070120694540684895890356769794481698480608369249458241977064933061082585119360303
41393221586423523264452449403781993352421885094664052270795527632721896121424813173522474
67439588615509220340403673074847478171071574544613546809813983182408325964791917527350368
15611726846242833844385047765030004322416045504543741163208222271919113221234840850639263
50606342197146407841178028071147192533942517270553513988142925976090769695456221159699052
58353301133165207934709309817308697548353927446402335745648446548292747956943732036859222
27602781703060767334388010983707976757112746710549707114421589305616843431357741187415945
06702833147396758825015850042983343690345185995956235143825771620543546030664562647854656
43130264457411987382021559571861862448523242200657555000706888373424145468636885673449626
53859088094039724946851377411228668967196780539372858184097516703201405018430392240407358
70096889596273419106389103662095318937990625980136711988237421962315266686856089505981438
44085063806758932114175949901702383959685845554819200014008514229416698706349902479268133
48431597909363213519198597586695692005415076120997809097051989021760262198722017154220960
90343686272984351441594569506778041062663266799342793856313801540959815845788584759033248
82824856158645027117277724097179565608200184811581526093052166316748017388606401911857277
82815167351577795558881677870644325585954108439874464978816662884232331700604130259246299
50477303342180149398926073618582715358742250388958231281694757980523791263699450732952325
72766420994778606398256177532763850451691857010131939169841238860760374248441474826838966
91291180268789697357822868411168426564105746476075244189007203280453779933862798087689903
76289424757351052369393977137871998119168898493037938756635621557623138404459266598837784
22932579983878202606048149686556175703183900225709180287694924839274417566911224208843988
32483363105970012573859807769615293511988777471935310549568818083321779467514040382287185
67911769630971553915410012677600002457982207465176670752102117002773980548089696530972476
43969459988128181297321726585388472790653547974585408533885110514458548199415620649743674
58999448777325314125412790143003245948906239411455098569409828637698344300481205629667979
07114102689879364945689860493474954538422367719507882513166051007352994068319251450666676
64836820056432938299875887576041425965400497726130998826731980635485605178455399093661063
47333759841590287223786149844502553863155856319945033500021429104931902548256107074005899
76364985748467955131077971641882672895854571236368282811336220769174784720113331269084746
52420412426347505411284163093358616619503611569646968607560048042056355756761683563325262
23271728110021463927544450511821698052846302597035426339551261795201130596299142298336885
35925729676778028406897316106101038469119090984567152591962365415039646394591503830797626
33924698605707775861141366491416874537526678629814117149657394161438774412584368567706361
97829187598231060210540377578577615874722408350405804473605440290649304125699431697292381
02162312218687930203068055400275795180972382856696655279408212344832

7

Problem 3 [20]: Functional Representation of Sets of Numbers

In CS230, you learned the extremely important notion of an abstract data type (ADT). In short, a
data type can be defined by an interface of routines that manipulate elements of that type,
independent of the details of how those routines are implemented.

ADTs are realizable in almost any programming language. For example, here is the Scheme
interface to an ADT for a set of integers:

(set-empty)
Return an empty set.

(set-singleton x)
Return a set whose single element is x.

(list->set lst)
Return a set whose elements are the elements of the list lst.

(set-member? x s)
Return #t if x is in set s and #f otherwise.

(set-union s1 s2)
Return a set whose elements are those that are in either s1 or s2.

(set-intersection s1 s2)
Return a set whose elements are those that are in both s1 and s2.

(set-difference s1 s2)
Return a set whose elements are those in s1 that are not in s2.

As in Java, we can implement this set ADT in Scheme in terms of familiar data structures like
arrays, lists, or trees. However, unlike Java, Scheme also allows abstract data types to be
implemented as functions. Intuitively, functions are just another kind of data structure. In fact,
we shall see that functions are often more flexible data structures than conventional arrays, lists,
and trees.

As a concrete example of this approach, we will explore how to implement integers sets as
functions. In particular, we will represent a set as the membership predicate that determines
whether a given element is in the set. For instance, the set {2, 3, 5} can be represented as the
function

(lambda (x)
 (or (= x 2) (= x 3) (= x 5)))

This function returns #t for the numbers 2, 3, and 5, but returns #f for all other numbers. The
empty set can be represented as the function that returns #f for all numbers:

(lambda (x) #f)

This functional representation has numerous advantages over the array/list/tree versions. In
particular, it is easy to specify sets that have infinite numbers of elements! For example, the set
of all even integers can be represented by the function

(lambda (x) (= (remainder x 2) 0)).

This predicate is true of even integers, but is false for all other integers. The set of integers
between 251 and 6001 (inclusive) can be represented by the function:

8

(lambda (x) (and (>= x 251) (<= x 6001))

The set of all numbers can be represented by

(lambda (x) #t)

(This assumes that the predicates are only being applied to integers. If we extended the notion of
set to include other Scheme values, then the set of all integers would be represented as the
predicate integer?)

a. Representing sets as membership predicates, implement the seven functions in the set
ADT presented above. You should do this by fleshing out the skeleton definitions in the
file ~/cs251/ps2/set.scm. You can test each of these functions F by evaluating (test-
F), and can test all your set functions by evaluating (test-set). your implementation by
loading the file cs251/ps2/set-test.scm and evaluating the invocation (test-set).
(The testing functions are defined in a file set-test.scm, which is automatically loaded
when you load set.scm.)

b. Below are some other routines we could add to the interface to the set ADT. For each such
routine, indicate whether or not it is possible to implement the routine (1) when sets are
represented as lists (2) when sets are represented as membership predicates. Justify your
answers.

i. (set-empty? set)
Return #t if the set is empty, and false otherwise.

ii. (predicate->set pred)
Given a membership predicate pred, return a set of the elements for which
pred is true.

iii. (set->list set)
Return a list of all the elements in set.

iv. (set-complement set)
Return the set of all numbers not in set.

v. (subset? set1 set2)
Return #t if all of the elements of set1 are also elements of set2, and #f otherwise.

9

Problem 4 [15] Church Numerals

The First-Class Functions handout (#11) discusses how n-fold composition functions (so-
called Church numerals) can be viewed as the basis of a system for arithmetic. Write
Scheme definitions for the functions plus, times, and raise that are described near the
end of the First-Class Function handout. Flesh out these definitions in the file
cs251/ps2/church.scm, which also contains code from the function composition
section of the First-Class functions handout. You may test your definitions by loading
cs251/ps2/church-test.scm and evaluating (test-church) .

Notes:

• Your definitions should not use any of the following: int->church, church->int,
repeated, n-fold, or recursion.

• Your definitions may use any other functions. In particular, the following functions
are useful for some: succ, compose, identity, zero, and one, where zero and one
are defined as:

(define zero (lambda (f) (lambda (x) x))) ; same as (n-fold 0)

(define one (lambda (f) (lambda (x) (f x)))) ; same as (n-fold 1)

Note that the above functions are not required for your solutions. Indeed, there are
solutions for all three definitions that use none of the above functions.

• For ideas on how to implement these three functions, carefully study the examples
involving twice and thrice in the function composition section of the First-Class
Functions handout. You can implement all three functions by generalizing patterns
you see in invocations of twice and thrice.

• One way to think of addition is as repeated incrementing. For example, we can get the
Church numeral for five by using three applications of the successor function starting
with two: (succ (succ (succ two))). Can you express this using three, succ, and
two? If so, you know how to do addition on Church numerals! Then note that
multiplication is repeated addition and exponentiation is repeated multiplication.

• Each of your function definitions should be extremely short. In fact, it's possible to
implement each definition as a "one-liner". (But if you obey Scheme pretty-printing
conventions, your definitions will be several lines long.)

10

Extra Credit Problems

These problems are are optional. You should only attempt them after completing the rest of the
problems. (Note that extra credit problems need not be turned in by the due date; they can be
handed in any time during the semester. However, experience shows that students rarely turn
them in after the problem set is due.)

EC1 [20]: Partitioning

Given an equality predicate eqpred (a so-called equivalence relation) and a list of elements, it
is possible to partition the list into sublists (so-called equivalence classes) such that (1) every
pair of elements from a given equivalence class are equal according to eqpred; and (2) no two
elements from distinct equivalence classes are equal according to eqpred. Define a Scheme
function (partition eqpred lst) that partitions lst into equivalence classes according to
eqpred. The order of elements within an equivalence class does not matter, nor does the order of
equivalence classes within a partition. For example:

> (partition (lambda (a b)
 (= (remainder a 3) (remainder b 3)))
 ‘(17 42 6 11 16 57 51 1 23 47))
((17 11 23 47) (16 1) (42 6 57 51))

> (partition (lambda (a b)
 (= (quotient a 10) (quotient b 10)))
 ‘(17 42 6 11 16 57 51 1 23 47))
((17 57 47) (23) (11 51 1) (6 16) (42))

> (partition (lambda (lst1 lst2)
 (= (length lst1) (length lst2)))
 ‘((1 2) () (2 2) (1 2 3) (1 3) (6) (2 1) (1 2 1) (3 1 2) (5 1)))
(((5 1) (2 1) (1 3) (2 2) (1 2)) (()) ((3 1 2) (1 2 1) (1 2 3)) ((6)))

> (partition (lambda (lst1 lst2)
 (= (sum lst1) (sum lst2)))
 ‘((1 2) () (2 2) (1 2 3) (1 3) (6) (2 1) (1 2 1) (3 1 2) (5 1)))
(((2 1) (1 2)) (()) ((1 2 1) (1 3) (2 2)) ((5 1) (3 1 2) (6) (1 2 3)))

> (partition (lambda (lst1 lst2)
 (equal? (insertion-sort < lst1)
 (insertion-sort < lst2)))
 ‘((1 2) () (2 2) (1 2 3) (1 3) (6) (2 1) (1 2 1) (3 1 2) (5 1)))
(((2 1) (1 2)) (()) ((3 1 2) (1 2 3)) ((1 3)) ((6)) ((1 2 1)) ((5 1)))

EC2 [20]: Improved Partitioning

Assume that eqpred from EC1 has unit cost. It can be shown that the best-case running time of
the partition function from EC1 has a worst-case quadratic asymptotic running time. This
running time can be improved to n (log n) if the partitioning function is supplied with a less-
than-or-equal-to predicate leqpred (also assumed to have unit cost), and the equality predicate
for partitioning is derived from leqpred. Define a Scheme partitioning function (partition-
leq leqpred lst) that paritions lst according to leqpred and runs in n (log n) worst-case
asymptotic time.

Note: you need not solve EC1 in order to solve EC2.

11

EC3 [20]: Predecessor

The predecessor function pred on Church numerals has the following behavior:

• if c is a Church numeral representing a non-zero integer n, then (pred c) is a Church
numeral representing the integer n - 1.

• if c is the Church numeral representing 0, then (pred c) is the Church numeral 0.

For example:

(church->int (pred (int->church 5))
4

(church->int (pred (int->church 1))
0

(church->int (pred (int->church 0))
0

Write the pred function in Scheme. Hint: iterate over a pair of Church numerals.

12

Appendix A: Higher-Order List Operations

(define identity
 (lambda (x) x))

(define compose
 (lambda (f g)
 (lambda (x)
 (f (g x)))))

 (define generate
 (lambda (seed next done?)
 (if (done? seed)
 '()
 (cons seed (generate (next seed) next done?)))))

 (define map
 (lambda (f lst)
 (if (null? lst)
 '()
 (cons (f (car lst))
 (map f (cdr lst))))))

(define map2
 (lambda (f lst1 lst2)
 (map (lambda (duple)

 (f (first duple) (second duple)))
 (zip lst1 lst2))))

(define zip
 (lambda (lst1 lst2)
 (if (or (null? lst1) (null? lst2))
 '()
 (cons (list (car lst1) (car lst2))
 (zip (cdr lst1) (cdr lst2))))))

(define filter
 (lambda (pred lst)
 (if (null? lst)
 '()
 (if (pred (car lst))
 (cons (car lst) (filter pred (cdr lst)))
 (filter pred (cdr lst))))))

(define foldr
 (lambda (op init lst)
 (if (null? lst)
 init
 (op (car lst) (foldr op init (cdr lst))))))

(define foldl
 (lambda (op init lst)
 (if (null? lst)
 init
 (foldl op (op (car lst) init) (cdr lst)))))

13

(define forall?
 (lambda (pred lst)
 (if (null? lst)
 #t
 (and (pred (car lst))
 (forall pred (cdr lst))))))

(define exists?
 (lambda (pred lst)
 (if (null? lst)
 #f
 (or (pred (car lst))
 (exists? pred (cdr lst))))))

(define some
 (lambda (pred lst)
 (if (null? lst)
 none
 (if (pred (car lst))
 (car lst)

 (some pred (cdr lst))))))

 (define none '(*none*))
 (define none? (lambda (x) (eq? x none)))

14

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS251 Problem Set 2
Due Friday, February 15, 2002

Names of Team Members:

Date & Time Submitted:

Soft Copy Directory:

Collaborators (any teams collaborated with in the process of doing the problem set):

In the Time column, please estimate the total time each team member spent on the parts of this
problem set. Please try to be as accurate as possible; this information will help me to design
future problem sets. I will fill out the Score column when grading your problem set.

Part Time Score Part Time Score

General
Reading

Problem 2h
[5]

Problem 1
[15]

Problem 2i
[5]

Problem 2a
[5]

Problem 2j
[5]

Problem 2b
[5]

Problem 3
[20]

Problem 2c
[5]

Problem 4
[15]

Problem 2d
[5]

Subtotal
[50]

Problem 2e
[5]

Total
[100]

Problem 2f
[5]

Problem
EC1 [20]

Problem 2g
[5]

Problem
EC2 [20]

Subtotal
[50]

Problem
EC3 [20]

