
CS251 Programming Languages Handout # 20

Prof. Lyn Turbak Feb. 27, 2002

Wellesley College

HOFL

HOFL (Higher Order Functional Language) is a Scheme-like language that extends IBEX with
first-class functions, recursive binding, and lists. We study HOFL to understand the design and
implementation issues involving first-class functions, particularly the notion of static vs. dynamic
scoping and recursive binding. Later, we will consider languages that support more restrictive
notions of functions than HOFL.

Although HOFL supports a list datatype, we will not study lists in the context of HOFL.
Instead, we will embark on a more general study of compound data later. later. Lists in HOFL

are provided mainly for the convenience of expressing Scheme-like recursive functions.

1 HOFL

The HOFL language extends IBEX with the following features:

1.1 Abstractions and Function Applications

In HOFL, anonymous first-class functions are created via:

(abs (Iformal1
. . . Iformaln

) Ebody)

The abs construct corresponds directly to Scheme’s lambda. It is introduced by a different key-
word (abs vs. lambda) to help us maintain the distinction between HOFL programs and Scheme
programs.

As in Scheme, functions applications are expressed by the parenthesized notation

(Erator Erand1 . . . Erandn)

where Erator is an arbitrary expression that denotes a function, and Erand1 . . .Erandn denote the n

operand values to which the function is applied. For example:

hofl> ((abs (a b) (div (+ a b) 2)) 3 5)

4

hofl> ((abs (f) (f 5)) (abs (x) (* x x)))

25

hofl> ((abs (f) (f 5))

((abs (x) (abs (y) (+ x y))) 12))

17

The second and third examples highlight the first-class nature of HOFL function values.
One difference between HOFL and Scheme is that the names of HOFL primitive operators

that appear in the rator position of an application cannot be shadowed by outer bindings of the
same name. However, names of HOFL primitive operators can be used as regular variables in other
positions:

1

scheme> ((lambda (+) (+ 3 4)) (lambda (a b) (* a b)))

12

hofl> ((abs (+) (+ 3 4)) (abs (a b) (* a b)))

7

hofl> ((abs (*) (+ 3 *)) 5)

8

1.2 Top-Level Definitions

InHOFL, values and functions may be defined at the “top level” of a program via the def construct.
For example:

(program (x)

(def five (+ 2 3))

(def sqr (abs (x) (* x x)))

(def (sos a b) (+ (sqr a) (sqr b)))

(sos (* 2 x) five))

In general, a HOFL program has the form:

(program (Iformal1
. . . Iformaln

)

D1
...

Dk

Ebody)

where each Di is a definition that is defined by the following grammar:

D → (def Iname Edefn)

D → (def (Ifunname Iformal1
. . . Iformaln

) Ebody)

The first form of definition associates Iname with the value of Edefn . The second form of definition
associates Ifunname with a function that takes formal parameters Ifunname Iformal1

. . .Iformaln
) and

whose body is Ebody . The second form of definition is just syntactic sugar for

(def Ifunname (abs (Iformal1
. . . Iformaln

) Ebody)).

Running a HOFL program returns the result of evaluating its body expression in a context
where the formal parameters of the program and the names introduced by the definitions are
appropriately bound.

Functions define via def are mutually recursive with each other. For example:

;; Singly recursive function

(program (x)

(def fact

(abs (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

(fact x))

2

;; Mutually recursive function

(program (x)

(def (even? n)

(if (= n 0)

true

(odd? (- n 1))))

(def (odd? n)

(if (= n 0)

false

(even? (- n 1))))

(even? x))

1.3 Recursive Local Bindings

Singly and mutually recursive functions can be defined anywhere (not just at top level) via the
bindrec construct:

(bindrec ((Iname1 Edefn1) . . . (Inamen Edefnn)) Ebody)

The bindrec construct is similar to bindpar and bindseq except that the scope of Iname1 . . .Inamen
includes all definition expressions Edefn1 . . .Edefnn as well as Ebody . For example:

(program (x)

(def tester

(abs (bool)

(bindrec ((test1 (abs (n)

(if (= n 0)

bool

(test2 (- n 1)))))

(test2 (abs (n)

(if (= n 0)

(not bool)

(test1 (- n 1))))))

test1)))

((tester false) x))

1.4 Lists

HOFLsupports the following list operators, which are shown side-by-side with their Scheme analogs:

HOFL Scheme

prepend cons

head car

tail cdr

empty ’()

empty? null?

3

(program (hi)

(def (map f lst)

(if (empty? lst)

(empty)

(prepend (f (head lst))

(map f (tail lst)))))

(def (from lo)

(if (> lo hi)

(empty)

(prepend lo (from (+ lo 1)))))

(bind test-list (from 1)

(map (abs (f) (map f test-list))

(list (abs (x) (* x x))

(abs (y) (= (mod y 2) 0))

(abs (z) (prepend z

(prepend (* 2 z)

(empty))))))))

The HOFL construct (list E1 E2 . . . En) desugars to:

(prepend E1

(prepend E2

...

(prepend En

(empty)) . . .))

This is similar to Scheme, except that Scheme’s list is a first-class function whereas HOFL’s list
is a special syntactic construct defined by desugaring.

2 Scoping Mechanisms

In order to understand a program, it is essential to understand the meaning of every name. This
requires being able to reliably answer the following question: given a reference occurrence of a
name, which binding occurrence does it refer to?

In many cases, the connection between reference occurrences and binding occurrences is clear
from the meaning of the binding constructs. For instance, in the HOFL abstraction

(abs (a b) (bind c (+ a b) (div c 2)))

it is clear that the a and b within (+ a b) refer to the parameters of the abstraction and that the
c in (div c 2) refers to the variable introduced by the bind expression.

However, the situation becomes murkier in the presence of functions whose bodies have free
variables. Consider the following HOFL program:

(program (a)

(bind add-a (abs (x) (+ x a))

(bind a (+ a 10)

(add-a (* 2 a)))))

4

The add-a function is defined by the abstraction (abs (x) (+ x a)), which has a free variable
a. The question is: which binding occurrence of a in the program does this free variable refer to?
Does it refer to the program parameter a or the a introduced by the bind expression?

A scoping mechanism determines the binding occurrence in a program associated with a free
variable reference within a function body. In languages with block structure1 and/or higher-order
functions, it is common to encounter functions with free variables. Understanding the scoping
mechanisms of such languages is a prerequisite to understand the meanings of programs written in
these languages.

We will study two scoping mechanisms in the context of the HOFL language: static scoping

and dynamic scoping. To simplify the discussion, here will will only consider HOFL programs
that do not use the bindrec construct. We will study recursive bindings in more detail later.

3 Static Scoping

3.1 Contour Model

In static scoping, the meaning of every variable reference is determined by the contour boxes
introduced in Section 2. To determine the binding occurrence of any reference occurrence of a
name, find the innermost contour enclosing the reference occurrence that binds the name. This is
the desired binding occurrence.

For example, below is the contour diagram associated with the add-a example. The reference
to a in the expression (+ x a) lies within contour boxes C1 and C0. C1 does not bind a, but
C0 does, so the a in (+ x a) refers to the a bound by (program (a) ...). Similarly, it can be
determined that:

• the a in (+ a 10) refers to the a bound by (program (a) ...);

• the a in (* 2 a) refers the a bound by (bind a ...);

• the x in (+ x a) refers to the x bound by (abs (x) ...).

• the add-a in (add-a (* 2 a)) refers to the add-a bound by (bind add-a ...).

(program (a)

 (bind add-a (abs (x) (+ x a))

 (bind a (+ a 10)

 (add-a (* 2 a)))))

C1

C3

C0

C2

Because the meaning of any reference occurrence is apparent from the lexical structure of the
program, static scoping is also known as lexical scoping.

As another example of a contour diagram, consider the contours associated with the following
program containing a create-sub function:

1A language has block structure if functions can be declared locally within other functions. As we shall see later,

a language can have block structure without having first-class functions.

5

(program (n)

 (bind create-sub (abs (n) (abs (x) (- x n)))

 (bindpar ((sub2 (create-sub 2))
 (sub3 (create-sub 3)))

 (bind test (abs (n) (sub2 (sub3 (- n 1))))

 (test (sub3 (+ n 1)))

)
)
)
)

C1

C2

C0

C3

C4

C6

C5

By the rules of static scope:

• the n in (- x n) refers to the n bound by the (abs (n) ...) of create-sub;

• the n in (- n 1) refers to the n bound by the (abs (n) ...) of test;

• the n in (+ n 1) refers to the n bound by (program (n) ...).

3.2 Substitution Model

The same substitution model used to explain the evaluation of Scheme can be used to explain the
evaluation of statically scoped HOFL expressions that do not contain bindrec. (Handling bindrec
is tricky in the substitution model, and will be considered later.)

Below, use the substitution model to explain the evaluation of the two examples from the
previous section:

6

7

3.3 Environment Model

We would like to be able to explain static scoping within the environment model of evaluation.
Most evaluation rules of the environment model are independent of the scoping mechanism. Such
rules are shown in Fig. 1.

Program Running Rule

• To run a HOFL program (program (I1 . . . In) Ebody) on integers i1, . . . , ik, return the result of
evaluating Ebody in an environment that binds the formal parameter names I1 . . .In respectively to
the integer values i1, . . . , ik.

Expression Evaluation Rules

• To evaluate a literal expression in any environment, return the value of the literal.

• To evaluate a variable reference expression I expression in environment ENV , return the value of
looking up I in ENV . If I is not bound in ENV , signal an unbound variable error.

• To evaluate the conditional expression (if E1 E2 E3) in environment ENV , we first evaluated
E1 in ENV . If the result is true, we return the result of evaluating E2 in ENV ; else we return the
result of evaluating E3 in ENV .

• To evaluate the primitive application (primop E1 ... En) in environment ENV , we must first
evaluate the operand expressions E1 through En in ENV . We then return the result of applying the
primitive operator primop to the resulting operand values.

• To evaluate the function application (E0 E1 ... En) in environment ENV , we must first evaluate
the expressions E0 through En in ENV . We then return the result of applying the function value
to the operand values. (The details of what it means to apply a function is at the heart of scoping
and, as we shall see, differs among scoping mechanisms.)

Although bind, bindrec, and bindseq can all be “desugared away”, it is convenient to imagine that there
are rules for evaluating these constructs directly:

• Evaluating (bind Ename Edefn Ebody) in environment ENV is the result of evaluating Ebody in the
environment that results from extending ENV with a frame containing a single binding between
Ename and the result of evaluating Edefn in ENV .

• A bindpar is evaluated similarly to bind, except that the new frame contains one binding for each
of the name/defn pairs in the bindpar. As in bind, all defns of bindpar are evaluated in the original
frame, not the extension.

• A bindseq expression should be evaluated as if it were a sequence of nested binds.

Figure 1: Environment model evaluation rules that are independent of the scoping mechanism.

8

It turns out that any scoping mechanism is determined by how the following two questions are
answered within the environment model:

1. What is the result of evaluating an abstraction in an environment?

2. When creating a frame to model the application of a function to arguments, what should the
parent frame of the new frame be?

In the case of static scoping, answering these questions yields the following rules:

1. Evaluating an abstraction ABS in an environment ENV returns a closure that pairs together
ABS and ENV . The closure “remembers” that ENV is the environment in which the free
variables of ABS should be looked up; it is like an “umbilical cord” that connects the ab-
straction to its place of birth. We shall draw closures as a pair of circles, where the left circle
points to the abstraction and the right circle points to the environment:

ABST

ENV
2. To apply a closure to arguments, create a new frame that contains the formal parameters

of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment remembered by the closure. That is, the new frame should
extend the environment where the closure was born, not (necessarily) the environment in
which the closure was called. This creates the right environment for evaluating the body of
the abstraction as implied by static scoping: the first frame in the environment contains the
bindings for the formal parameters, and the rest of the frames contain the bindings for the
free variables.

We will show these rules in the context of using the environment model to explain executions
of the two programs from above. First, consider running the add-a program on the input 3. This
evaluates the body of the add-a program in an environment ENV 0 binding a to 3:

a

3

ENV0

To evaluate the (bind add-a ...) expression, we must first evaluation the definition (abs (x) (+ x a))

in ENV 0. According to rule 1 from above, this should yield a closure pairing the abstraction with
ENV 0. A new frame ENV 2 should then be created binding add-a to the closure:

a

3

ENV0

add-a

 (abs (x) (+ x a))

ENV2

Next the expression (bind a ...) is evaluated in ENV 2. First the definition (+ a 10) is
evaluated in ENV 1, yielding 13. Then a new frame ENV 3 is created that binds a to 13:

9

a

3

ENV0

add-a

(abs (x) (+ x a))

ENV2

a

13

ENV3

Finally the function application (add-a (* 2 a)) is evaluated in ENV 3. First, the subexpres-
sions add-a and (* 2 a) must be evaluated in ENV 3; these evaluations yield the add-a closure
and 26, respectively. Next, the closure is applied to 26. This creates a new frame ENV 1 binding
x to 26; by rule 2 from above, the parent of this frame is ENV 0, the environment of closure; the
environment ENV 3 of the function application is simply not involved in this decision.

a

3

ENV0

add-a

(abs (x) (+ x a))

ENV2

a

13

ENV3

x

26

ENV1

As the final step, the abstraction body (+ x a) is evaluated in ENV 1. Since x evaluates to 26
in ENV 3 and a evaluates to 3, the final answer is 29.

As a second example of static scoping in the environment model, consider running the create-sub
program from the previous section on the input 12. Below is an environment diagram showing all
environments created during the evaluation of this program. You should study this diagram care-
fully and understand why the parent pointer of each environment frame is the way it is. The final
answer of the program (which is not shown in the environment model itself) is 4.

10

n

12

ENV0

ENV3

ENV4

n

create-sub

sub2

sub3

2

n

3

(abs (n)
 (abs (x)
 (- x n)))

(abs (x) (- x n))

ENV1b

ENV1a

ENV6

test

(abs (n) (sub2 (sub3 (- n 1))))

x

13

ENV2a

n

10

x

9

ENV2b

x

ENV2c

6

ENV5

In both of the above environment diagrams, the environment names have been chosen to un-
derscore a critical fact that relates the environment diagrams to the contour diagrams. Whenever
environment frame ENV i has a parent pointer to environment frame ENV j in the environment
model, the corresponding contour C i is nested directly inside of C j within the contour model. For
example, the environment chain ENV 6 → ENV 4 → ENV 3 → ENV 0 models the contour nesting
C6 → C4 → C3 → C0, and the environment chains ENV 2c → ENV 1a → ENV 0, ENV 2a → ENV 1b

→ ENV 0, and ENV 2b → ENV 1b → ENV 0 model the contour nesting C2 →C1 →C0.
These correspondences are not coincidental, but by design. Since static scoping is defined by

the contour diagrams, the environment model must somehow encode the nesting of contours. The
environment component of closures is the mechanism by which this correspondence is achieved.
The environment component of a closure is guaranteed to point to an environment ENV birth that
models the contour enclosing the abstraction of the closure. When the closure is applied, the newly
constructed frame extends ENV birth with a new frame that introduces bindings for the parameters
of the abstraction. These are exactly the bindings implied by the contour of the abstraction. Any
expression in the body of the abstraction is then evaluated relative to the extended environment.

3.4 Interpreter Implementation of Environment Model

Rules 1 and 2 of the previous section are easy to implement in an environment model interpreter.
The implementation is shown in Figure 2. Note that it is not necessary to pass env as an argument
to funapply, because static scoping dictates that the call-time environment plays no role in applying
the function.

11

;; Implementation of ENV-EVAL using static scope

(define env-eval

(lambda (exp env)

.

.

.

;; Clause corresponding to rule 1

((abs? exp)

(make-closure exp env)) ;; Remember environment of creation

;; Clause corresponding to rule 2

((funapp? exp)

(let ((closure (env-eval (funapp-rator exp) env))

(actuals (env-eval-list (funapp-rands exp) env)))

(funapply closure actuals)))

.

.

.

))

;; Auxiliary function used by clause for rule 2

(define funapply

(lambda (closure actuals)

(cond ((not (closure? closure))

(throw ’funapply:application-of-non-closure closure))

(not (= (length (closure-formals closure))

(length actuals))

(throw ’funapply:formals-actuals-mismatch

list (closure-formals closure) actuals))

(else

(env-eval (closure-body closure)

(env-extend (closure-formals closure)

actuals

(closure-env closure) ;; env of creation

)))

)))

Figure 2: Essence of static scoping.

12

4 Dynamic Scoping

4.1 Environment Model

In dynamic scoping, environments follow the shape of the invocation tree for executing the program.
Recall that an invocation tree has one node for every function invocation in the program, and that
each node has as its children the nodes for function invocations made directly within in its body,
ordered from left to right by the time of invocation (earlier invocations to the left). Since bind

desugars into a function application, we will assume that the invocation tree contains nodes for
bind expressions as well. We will also consider the execution of the top-level program to be a kind
of function application, and its corresponding node will be the root of the invocation tree. For
example, here is the invocation tree for the add-a program:

run (program (a) ...)

 bind add-a

invoke add-a

bind a

As a second example, here is the invocation tree for the create-sub program:

run (program (n) ...)

 bind create-sub

invoke create-sub 2

invoke create-sub 3

bindpar sub2,sub3

 bind test

invoke sub3

invoke test

invoke sub3

invoke sub2

Note: in some cases (but not the above two), the shape of the invocation tree may depend on
the values of the arguments at certain nodes, which in turn depends on the scoping mechanism.
So the invocation tree cannot in general be drawn without fleshing out the details of the scoping
mechanism.

The key rules for dynamic scoping are as follows:

1. Evaluating an abstraction ABS in an environment ENV just returns ABS . In dynamic
scoping, there there is no need to pair the abstraction with its environment of creation.

2. To apply a closure to arguments, create a new frame that contains the formal parameters of
the abstraction of the closure bound to the argument values. The parent of this new frame
should be the environment in which the function application is being evaluated - that is, the
environment of the invocation (call), not the environment of creation. This means that the

13

free variables in the abstraction body will be looked up in the environment where the function
is called.

Consider the environment model showing the execution of the add-a program on the argument 3
in a dynamically scoped version of HOFL. According to the above rules, the following environments
are created:

a

3

ENV0

add-a

(abs (x) (+ x a))

ENV1

a

13

ENV2

x

26

ENV3

run (program (a) ...)

bind add-a

invoke add-a

bind a

The key differences from the statically scoped evaluation are (1) the name add-a is bound to
an abstraction, not a closure and (2) the parent frame of ENV 3 is ENV 2, not ENV 0. This means
that the evaluation of (+ x a) in ENV 3 will yield 39 under dynamic scoping, as compared to 29
under static scoping.

Figure 3 shows an environment diagram showing the environments created when the create-sub
program is run on the input 12. The top of the figure also includes a copy of the invocation tree to
emphasize that in dynamic scope the tree of environment frames has exactly the same shape as the
invocation tree. You should study the environment diagram and justify the target of each parent
pointer. Under dynamic scoping, the first invocation of sub3 (on 13) yields 1 because the n used
in the subtraction is the program parameter n (which is 12) rather than the 3 used as an argument
to create-sub when creating sub3. The second invocation of sub3 (on 0) yields -1 because the n
found this time is the argument 1 to test. The invocation of sub2 (on -1) finds that n is this same
1, and returns -2 as the final result of the program.

4.2 Interpreter Implementation

The two rules of the dynamic scoping mechanism are easy to encode in the environment model.
The implementation is shown in Figure 2. For the first rules, the evaluation of an abstraction just
returns the abstraction. For the second rules, the application of a function passes the call-time
environment to funapply-dynamic, where it is used as the parent of the environment frame created
for the application.

14

run (program (n) ...)

 bind create-sub

invoke create-sub 2

invoke create-sub 3

bindpar sub2,sub3

 bind test

invoke sub3

invoke test

invoke sub3

invoke sub2

n

12

ENV0

ENV3

ENV4

n

create-sub

sub2

sub3

2

n

3

(abs (n)(abs (x)(- x n)))

(abs (x) (- x n))

ENV1b

ENV1a

test

(abs (n)(sub2 (sub3 (- n 1))))

x

13

ENV2a

n

1

 x

-1

ENV2c

x

ENV2b

0

ENV5

ENV6

Figure 3: Invocation tree and environment diagram for the create-sub program run on 12.

15

;; Implementation of ENV-EVAL using dynamic scope

(define env-eval

(lambda (exp env)

.

.

.

;; Clause corresponding to rule 1

((abs? exp) exp) ; No need to create a closure in dynamic scope

;; Clause corresponding to rule 2

((funapp? exp)

(let ((abst (env-eval (funapp-rator exp) env))

(actuals (env-eval-list (funapp-rands exp) env)))

(funapply abst actuals env))) ; Pass env of call

.

.

.

))

;; Auxiliary function used by clause for rule 2

(define funapply

(lambda (abst actuals dyn-env)

(cond ((not (abs? abst))

(throw ’funapply:application-of-non-abstraction abst))

(not (= (length (abs-formals abst))

(length actuals))

(throw ’funapply:formals-actuals-mismatch

list (abs-formals abst) actuals))

(else

(env-eval (abs-body abst)

(env-extend (abs-formals abst)

actuals

dyn-env))) ;; env of call

)))

Figure 4: Essence of dynamic scoping.

16

