
CS251 Programming Languages Handout # 30
Prof. Lyn Turbak Mar. 26, 2002
Wellesley College

Type Checking

1 Static Properties of Programs

Programs have both dynamic and static properties:

• A dynamic property is one that can be determined in general only at run-time by executing
the program.

• A static property is one that can be determined without executing the program. Static
properties are often determined at compile time by a compiler.

For instance, consider the following Scheme expression:

(let ((n (read)) ; Scheme’s READ reads a value from user

(sq (lambda (x) (* x x)))

(if (integer? n)

(+ (sq (- n 1)) (sq (+ n 1)))

0))

The value of this expression is a dynamic property, because it cannot be known until run-time what
input will be entered by the user. However, there are numerous static properties of this program
that can be determined at compile-time:

• The free variables of the expression are + and *.

• The result of the expression is an a non-negative even integer.

• If the user enters an input, the program is guaranteed to terminate.

A property is only static if it is possible to compute it at compile-time. In general, most
interesting program properties are uncomputable (e.g., does the program halt? is a particular
variable guaranteed to be initialized?). There are two ways that uncomputability is handled in
practice:

1. Make a conservative approximation to the desired property. E.g., for the halting problem
answer either ”yes, it halts” or ”it may not halt”.

2. Restrict the language to the point where it is possible to determine the property unequivocally.
Such restrictions reduce the expressiveness of the language, but in return give precise static
information. The ML language is an example of this approach; in order to provide static type
information, it forbids many programs that would not give run-time type errors.

1

2 Types

Intuitively, types are sets of values. For instance, Java’s int type stands for the set of all integers
(actually, the set of all integers representable using 32 bits), while the boolean type stands for the
set of values true and false. In general, finer-grained distinctions might be helpful (e.g. even
integers, positive integers), but we will stick with the notion of disjoint types supported by most
programming languages.

In Scheme (as well as all the toy languages we have studied thus far this semester), every value
carries with it dynamic type information that is only checked when the value is examined during
evaluation. For example:

• Evaluating a primitive application checks that the number and types of the operands are
appropriate for the primitive operator.

• Evaluating an if expression checks that the test subexpression has boolean type.

• Evaluating a function application checks that the operator is a closure and that the number
of actual arguments matches the number of formal parameters expected by the closure.

These sorts of run-time checks are the essence of dynamic type checking.
In most modern programming languages, the type of an expression is a static property, not a dy-

namic one. Proponents of static types give the following reasons for including them in programming
languages:

• Safety: Static types guarantee that type checked programs cannot encounter certain errors
at run-time.

• Efficiency: Static types provide information to the compiler that can eliminate the time
associated with run-time type checks and the space required to store run-time types.

• Documentation: Static types provide documentation about the program that can facilitate
reasoning about the program, both by humans and by other programs (e.g. compilers). Such
information is especically valuable in large programs.

• Program Development: Static types help programmers catch errors in their programs before
running them and help programmers make representation changes.

2

3 HOFLEMT: A Language with Monomorphic Types

In a language with monomorphic types, each expression can be assigned a single type. Here we
consider monomorphic type systems in the context of the toy language HOFLEMT, a language
that extends HOFL with explicit monomorphic types. HOFLEMT is the first of a series of typed
toy languages we will study. Just as the toy languages FOFL, FOBS, and HOFL gave us insight
into Scheme and interpretation, the typed toy languages will give us insight into ML, type checking,
and type reconstruction.

3.1 HOFLEMT Syntax

Fig. 1 presents the grammar for HOFLEMT, a statically-typed version of HOFL with explicit
monomorphic types. The grammar is similar to that for the dynamically-typed HOFL except for
a few additions and changes.

The major addition is the introduction of type phrases via the non-terminals B and T. According
to the grammar, a type may be of three different forms:

1. Base types B are names that designate the types of HOFL literals:

• unit - the type of the one-point set {()};

• bool - the type of the two-point set {true,false};

• int - the type of integers;

• string - the type of strings;

• sym - the type of symbols;

2. A list type of the form (listof T) designate lists all of whose elements have type T. In
HOFLEMT, only homogeneous lists are supported – that is, lists in which all elements
must be of the same type. For example (listof int) designates lists of integers, and
(listof bool) designates lists of booleans, but it is not possible to have a list that con-
tains both integers and booleans.

3. A function type of the form (-> (T1...Tn) T0) designates functions whose n arguments,
in order, have types T1 . . .Tn , and whose result has type T0 . For example, an increment-
ing function on integers would have type (-> (int) int), an addition function on integers
would have type (-> (int int) int), and a less-than function on integers would have type
(-> (int int) bool).

In HOFLEMT, the syntax of abstractions, recursions, and the empty list primitive application
have been extended to include type information:

• In an abstraction (abs ((I1 T1) . . . (In Tn)) E), each formal parameter name is paired
with the type of that parameter. For example, here is a function that takes an integer and a
boolean; it increments the integer if the boolean is true, but doubles it if the boolean is false:

(abs ((n int) (b bool))

(if b (+ n 1) (* n 2)))

As another example, consider a function that composes a string to integer function with an
integer to boolean function:

3

P ∈ Program

P → (program (Iformal1
...Iformaln

) Ebody) Program

E ∈ Expression

Kernel Expressions:
E → L Literal
E → I Variable Reference
E → (Orator Erand1

. . . Erandn
) Primop Application

E → (empty T) Empty List Primapp
E → (if Etest Ethen Eelse) Conditional
E → (bindpar ((Iname1

Edefn1
) . . . (Inamen

Edefnn
)) Ebody) Parallel Binding

E → (bindrec ((Iname1
T1 Edefn1

) . . . (Inamen
Tn Edefnn

)) Ebody) Local Recursion
E → (abs ((I1 T1) . . . (In Tn)) Ebody) Abstraction
E → (Erator Erand1

. . . Erandn
) Function Application

Sugar Expressions:
E → (scand E1 E2) Short-Circuit And
E → (scor E1 E2) Short-Circuit Or
E → (cond (Etest1 Ebody1

) . . . (Etestn
Ebodyn

) (else Edefault)) Multi-branch Conditional
E → (bind Iname Edefn Ebody) Local Binding
E → (bindseq ((Iname1

Edefn1
) . . . (Inamen

Edefnn
)) Ebody) Sequential Binding

L ∈ Literal

L → N Numeric Literal
L → B Boolean Literal
L → Y Symbolic Literal

O ∈ Primitive Operator: e.g., +, <=, band, not, prepend
F ∈ Function Name: e.g., f, sqr, +-and-*
I ∈ Identifier: e.g., a, captain, fib_n-2
N ∈ Integer: e.g., 3, -17
B ∈ Boolean: true and false

Y ∈ Symbol: e.g., (symbol a), (symbol captain), (symbol fib_n-2)

B ∈ BaseType

B → unit Unit Type (one-point set)
B → bool Boolean Type (two-point set)
B → int Integer Type
B → string String Type
B → sym Symbol Type

T ∈ Type

T → B Base Type
T → (listof T) List Type (with components of Type T)
T → (-> (T1...Tn) T0) Function (Arrow) Type

Figure 1: Grammar for the monomorphically typed HOFLEMT language.

4

(abs ((f (-> (int) bool)) (g (-> (string) int)))

(abs ((x string))

(f (g x))))

• In a local recursion (bindrec ((I1 T1 E1) . . . (In Tn En)) E), each binding is anno-
tated with the type of that binding. For example:

(bindrec ((even? (-> (int) bool)

(abs ((n int))

(if (= n 0)

true

(odd? (- n 1)))))

(odd? (-> (int) bool)

(abs ((n int))

(if (= n 0)

false

(even? (- n 1))))))

(even? 5))

• The empty list primitive application has a type annotation that indicates what type of empty
list is being created. For example:

– (empty bool) creates an empty list of booleans;

– (empty (-> (int) bool)) creates an empty list of integer predicates; and

– (empty (listof int)) creates an empty list of integer lists.

5

3.2 Example

The HOFLEMT program in Fig. 2 illustrates all three different kinds of type annotations. The
type annotations have been highlighted in bold for emphasis. Make sure you can justify to yourself
why all the type annotations are the way they are.

(program (a b m n)

(bindrec ((from-to (-> (int int) (listof int))

(abs ((lo int) (hi int))

(if (> lo hi)

(empty int)

(prepend lo (from-to (+ lo 1) hi)))))

(map (-> ((-> (int) (listof bool)) (listof int))

(listof (listof bool)))

(abs ((f (-> (int) (listof bool)))

(lst (listof int)))

(if (empty? lst)

(empty (listof bool))

(prepend (f (head lst))

(map f (tail lst)))))))

(bind ints (from-to m n)

(bindpar ((bools1 (map (abs ((n int))

(prepend (> n a)

(prepend (< n b)

(empty bool))))

ints))

(bools2 (map (abs ((n int))

(prepend (> n 0)

(empty bool)))

ints)))

(prepend bools1 (prepend bools2 (empty (listof (listof bool))))))))

Figure 2: Example of HOFLEMT program.

As we shall see below, the explicit type annotations in HOFLEMT are designed to support
automatic type checking. It turns out that the HOFLEMT annotations are the minimal set
of annotations that allow the expression to be type checked via a simple type ”evaluator” that
”evaluates” each expression to its type. Program parameters do not need to be annotated since
they are assumed to be integers. Unlike bindrec, the bind and bindpar constructs do not require
the type of the named definition(s) to be given an explicit type. This is because in these constructs
the, the type checker can determine the type of the name(s) from the type of the definition(s).
In contrast, the recursive scope of bindrec makes it generally necessary to know the type of a
recursively bound name(s) as part of calculating the type of the associated definition(s).

6

3.3 Representing HOFLEMT Programs in SML

Fig. 3 shows how the grammar of HOFLEMT can be expressed using Standard ML data types.
Except for the addition of types, the data types are almost exactly the same as those we studied
for the dynamically typed HOFL language.

datatype Lit =

UnitLit

| IntLit of int

| BoolLit of bool

| StringLit of string

| SymLit of string

datatype Primop =

Add | Sub | Mul | Div | Mod (* arithmetic ops *)

| LT | LEQ | EQ | NEQ | GT | GEQ (* relational ops *)

| Band | Bor | Not (* logical ops *)

| SymEq (* symbol ops *)

| IsEmpty | Prepend | Head | Tail (* list ops *)

datatype Type =

UnitTy | IntTy | BoolTy | StringTy | SymTy (* base types *)

| ListTy of Type (* list types *)

| ArrowTy of Type list * Type (* function types *)

datatype Exp =

Lit of Lit

| VarRef of Id

| PrimApp of Primop * Exp list (* rator, rands *)

| PrimEmpty of Type (* special exp for typed empty list *)

| If of Exp * Exp * Exp (* test, then, else *)

| Abs of Id list * Type list * Exp (* formals, formalTypes, body *)

| FunApp of Exp * Exp list (* names, defns, body *)

| BindPar of Id list * Exp list * Exp (* names, defns, body *)

| BindRec of Id list * Type list

* Exp list * Exp (* names, types, defns, body *)

datatype Program = Prog of Id list * Exp (* formals, body *)

Figure 3: Standard ML data types for HOFLEMT.

7

4 Type Checking

4.1 Well-Typedness

A HOFLEMT expression E is said to be well-typed if it is possible to prove that it has a type
T using a set of typing rules. It turns out that HOFLEMT satisfies a type soundness theorem:

Theorem 4.1 (Type Soundness). For any well-typed HOFLEMT expression E that has a type

T, the run-type value of E is guaranteed to be a member of the set of values denoted by T.

The type soundness theorem means that it is impossible to encounter dynamic type errors when
evaluating a well-typed expression at run-time. The type soundness theorem is often summed up
by the motto ”Well-typed programs do not go wrong”. This motto is somewhat deceptive – well-
typed programs can encounter errors at run-time, but those errors cannot be type errors. Other
errors that can still be encountered are errors that depend on particular values (e.g. divide-by-zero,
attempt to take the head of an empty list, accessing an array at an out-of-bounds index) as well as
logical errors in the program (it gives the wrong answer).

We use the notation E:T to indicate that E is a well-typed expression with type T. For example:

():unit

true:bool

5:int

"foo":string

(symbol cs251):sym

(prepend 42 (prepend -17 (empty int))):(listof int)

(abs ((a int) (b int)) (div (+ a b) 2)):(-> (int int) bool)

Type environments are environments that associate value variable names with types. We will
write type environments as sets of bindings of the form E:T. For example, the type environment
{a:int, b:bool, f:(-> (int) int)} associates the name a with the type int, the name b with
the type bool, and the name f with the type (-> (int) int). If A is a type environment, I

is an identifier, and T is a type, we use the notation A(I) to denote the type bound to I in type
environment A, and A+{I1:T1 , . . ., In:Tn} to stand for the environment A extended with bindings
between I1 . . . In and T1n, respectively.

Just as expressions can be evaluated relative to a value environment, expressions can be typed
relative to a type environment. A type judgement of the form A ` E : T is pronounced ”Given
the type environment A, E has type T”, or, more succinctly, “A proves that E has type T”.

4.2 Proving Expressions Well-Typed

The well-typedness of expressions can be formalized in terms of a set of typing rules. A typing rule
has the form

Hypothesis_1; ... ; Hypothesis_n

(rulename)---------------------------------

Conclusion

where each of the hypotheses and conclusions is a typing judgement. Such a rule is pronounced
as follows: ”If the hypotheses Hypothesis_1 . . . Hypothesis_n are all true, then the conclusion
Conclusion is true.” The name rulename is just a handy way to refer to a particular rule.

8

The typing rules for HOFLEMT appear in Fig. 4. These typing rules can be used to prove
that a given HOFLEMT expression is well-typed. A proof that expression E is well-typed with
respect to a type environment A is a tree of type judgements where:

• The root of the tree is A ` E : T for some type T;

• Each judgement J appearing in the tree is justified by instantiating one of the typing rules
such that J is the conclusion of the instantiated rule and the children judgements of J are
the hypotheses of the instantiated rule.

Such a tree of judgements whose root is the judgement J is said to be a type derivation (or
typing) for J .

For example, consider the expression

(bind app5 (abs ((f (-> (int) bool)))

(f 5))

(app5 (abs ((x int))

(> x 0)))

Suppose that we want to show that this expression is well-typed with respect to the empty envi-
ronment. Because the typing derivation will be a rather wide tree, we will introduce the following
abbreviations to make it narrower:

TIB = (-> (int) bool)

TIBB = (-> (TIB) bool)

Eabsf = (abs ((f TIB)) (f 5))

Eabsx = (abs ((x int)) (> x 0))

Ebind = (bind app5 Eabsf (app5 Eabsx))

A1 = f: TIB

A2 = app5: TIBB

A3 = app5: TIBB, x:int

Below is a typing derivation for the expression that proves that it has type bool. Each horizontal
line is labeled with the name of the instantiated rule. Note that the leaves of the typing derivation
are judgements involving literals or variables; these have no hypotheses. Also note that the ”shape”
of the derivation is an ”upside down” abstract syntax tree for the expression at the root. That is,
a judgement for an expression E follows from the judgements of its direct subexpressions.

As shown above, type derivations can be drawn as trees in which all hypotheses for a rule are
on the same line above the horizontal bar and the conclusion of a rule is below the horizontal bar.
We shall call this the horizontal format for a type derivation.

9

Figure 4: Type rules for the HOFLEMT language.

10

Using the horizontal format, it is very easy to run out of horizontal space when drawing a
type derivation. Below, we illustrate an alternative vertical format for displaying the above type
derivation that makes much better use of horizontal space:

+ (var) A1 |- f : TIB

+ (int) A1 |- 5 : int

+ (app) A1 |- (f 5) : bool

+ (abs) |- (abs ((f TIB)) (f 5)): TIBB

| + (var) A2 |- app5 : TIBB

| | + (var) A3 |- x : int

| | + (int) A3 |- 0 : int

| | + (gt) A3 |- (> x 0) : bool

| + (abs) A2 |- (abs ((x int)) (> x 0)) : TIB

+ (app) A2 |- (app5 Eabsx) : bool

(bind) |- (bind app5 Eabsf (app5 Eabsx)) : bool

In this alternative representation, each conclusion of a rule is labeled with the name of the
rule used to derive it, and the hypotheses of the rule are those judgements on the lines labelled
”+” directly above the leftmost character of the rule name. Vertical lines are used to connect the
hypotheses of the same rule.

The vertical format makes it easier to draw type derivations for more complex expressions using
fewer abbreviations without running out of space. For example, Fig. 5 shows a type derivation for
the following expression:

(bindpar ((app5_1 (abs ((f (-> (int) int))) (f 5))

(app5_2 (abs ((f (-> (int) (-> (int) int)))) (f 5))

(make-sub (abs ((n int)) (abs ((x int)) (- x n)))))

(app5_1 (make-sub ((app5_2 make-sub) 3)))

The type derivation uses the following abbreviations:

TII = (-> (int) int)

A1 = app5_1: (-> (TII) int),

app5_2: (-> ((-> (int) TII)) TII),

make-sub: (-> (int) TII)

Note that the above derivation contains two separate copies of the app5 function: one that
assumes the argument f has type (-> (int) int) and the other that assumes that the argument
f has type (-> (int) (-> (int) int)). Two separate copies of this function are needed in
HOFLEMT because it is a monomorphic language: every expression has exactly one type. Since
the function is applied at two different argument types, it is necessary to have one copy of the
function per argument type.

Examples of real-life monomorphic languages include C, Pascal, and Fortran. As suggested by
the above example, in monomorphic languages it may be necessary to create many copies of the
same function that differ only in their type. For example, in monomorphic languages, it is necessary
to write separate sorting routines for arrays of integers and arrays of floating point numbers because
these two arrays have different types! Even worse, in Pascal, the size of the array is part of the
array type, so one must write a different sorting function to sort arrays of 10 integers and arrays
of 11 integers!

11

+ (var) f:TII |- f : TII

+ (int) f:TII |- 5 : int

+ (app) f:TII |- (f 5) : int

+ (abs) |- (abs ((f TII) (f 5)) : (-> (TII) int)

| + (var) f:(-> (int) TII) |- f : (-> (int) TII)

| + (int) f:(-> (int) TII) |- 5 : int

| + (app) f:(-> (int) TII) |- (f 5) : TII

+ (abs) |- (abs ((f (-> (int) TII))) (f 5)) : (-> ((-> (int) TII)) TII)

| + (var) n:int,x:int |- x : int

| + (var) n:int,x:int |- n : int

| + (sub) n:int,x:int |- (- x n) : int

| + (abs) n:int |- (abs ((x int)) (- x n)) : TII

+ (abs) |- (abs ((n int)) (abs ((x int)) (- x n))) : (-> (int) TII)

| + (var) A1 |- app5_1 : (-> (TII) int)

| | + (var) A1 |- make-sub : (-> (int) TII)

| | | + (var) A1 |- app5_2: (-> ((-> (int) TII)) TII)

| | | + (var) A1 |- make-sub: (-> (int) TII)

| | | + (app) A1 |- (app5 make-sub): TII

| | | + (int) A1 |- 3: int

| | + (app) A1 |- ((app5 make-sub) 3) : int

| + (app) A1 |- (make-sub ((app5 make-sub) 3)) : TII

+ (app) A1 |- (app5 (make-sub ((app5 make-sub) 3))) : int

(bindpar) |- (bindpar ((app5_1 (abs ((f TII)) (f 5))

(app5_2 (abs ((f (-> (int) TII))) (f 5))

(make-sub (abs ((n int))

(abs ((x int))

(- x n)))))

(app5_1 (make-sub ((app5_2 make-sub) 3))) : int

Figure 5: Example type derivation using the vertical format.

12

Above we only considered showing that HOFLEMT expressions are well-typed. It is also
possible to show that HOFLEMT programs are well-typed. This can be done by showing that
the body of the program is well-typed with respect to a type environment where each program
parameter is bound to the int type.

4.3 Type Checking

It is possible to check the well-typedness of a HOFLEMT expression or program via an automatic
type checker. A type checker is very much like an evaluator, except that rather than finding
the type of an expression relative to a value environment, it determines the type of an expression
relative to a type environment.

Figs. 6–7 present an SML implementation of a type checker for HOFLEMT. The core of the
type checker is the checkExp function defined in Fig. 6, whose SML type is:

val checkExp : AST.Exp -> Type Ident.Env.env -> Type

The checkExp function encodes all the typing rules from Fig. 4 except for the rules that handled
primitives. It calculates the type of an expression from the types of its subexpressions. If the
subexpression types do not match the typing rules, checkExp raises a TypeCheckError exception
indicating that the expression is not well typed.

The type checking of primitive applications is specified in the PrimopEnv structure (not shown
in the figures). This module has the following signature:

signature PRIMOP_ENV = sig

exception PrimTypeCheckError of string

exception PrimEvalError of string

datatype PrimDesc =

PDesc of Primitive.Primop (* name of primitive *)

* (Type.Ty list -> Type.Ty) (* type checker *)

* (Value.Val list -> Value.Val) (* meaning of primop *)

val lookup : Primitive.Primop -> PrimDesc

end

The PrimDesc datatype is used to encode the type checking rules and evaluation rules of
primitive operators. Fig. 8 shows a few representative examples of the primitive descriptors for
HOFLEMT. The typeMismatch function (not shown) raises a PrimTypeErrorException with an
appropriate explanation of the mismatch.

The type of a program is found by the checkProg function in Fig. 7, whose SML type is:

val checkProg : AST.Program -> Type

The checkProg function returns the type of the body of a program under the assumption that
all the arguments of the program are integers. Like checkExp, it raises a TypeCheckError exception
if the program is not well-typed.

13

fun checkExp (Lit(UnitLit)) env = UnitTy

| checkExp (Lit(IntLit(_))) env = IntTy

| checkExp (Lit(BoolLit(_))) env = BoolTy

| checkExp (Lit(StringLit(_))) env = StringTy

| checkExp (Lit(SymLit(_))) env = SymTy

| checkExp (VarRef(name)) env =

(case TEnv.lookup(name, env) of

NONE => raise TypeCheckError

("Unbound variable: " ^ (Ident.toString(name)))

| SOME(ty) => ty)

| checkExp (exp as If(test,thenExp,elseExp)) env =

let val testTy = checkExp test env

val thenTy = checkExp thenExp env

val elseTy = checkExp elseExp env

in if not(Type.equal(testTy,BoolTy)) then

raise TypeCheckError("if: non-boolean test expression")

else if not(Type.equal(thenTy,elseTy)) then

raise TypeCheckError("if: branch types don’t match:\n"

^ "Then type: " ^ (Type.toString(thenTy))

^ "\nElse type: " ^ (Type.toString(elseTy)))

else

thenTy

end

| checkExp (Abs(formals,types,body)) env =

ArrowTy(types, checkExp body (TEnv.extend(formals,types,env)))

| checkExp (FunApp(rator, rands)) env =

typeApply (checkExp rator env) (checkExpList rands env)

| checkExp (PrimEmpty(ty)) env = ListTy(ty) (* special prim in HOFLEMT *)

| checkExp (exp as (PrimApp(primop,rands))) env =

let val PrimopEnv.PDesc(_,primCheck,_) = PrimopEnv.lookup(primop)

in primCheck (checkExpList rands env)

handle PrimopEnv.PrimTypeCheckError(msg) =>

raise TypeCheckError(msg)

end

| checkExp(BindPar(names,defns,body)) env =

checkExp body (TEnv.extend(names, checkExpList defns env, env))

| checkExp (BindRec(names,tys,defns,body)) env =

let val recEnv = TEnv.extend(names,tys,env)

val defnTys = checkExpList defns recEnv

in case ListOps.some3 (fn(name,ty,defnTy) =>

not (Type.equal(ty,defnTy)))

names tys defnTys of

NONE => checkExp body recEnv

| SOME(name,ty,defnTy) =>

raise TypeCheckError

("bindrec: binding type doesn’t match definition type:\n"

^ "binding name: " ^ (Ident.toString name)

^ "\nbinding type: " ^ (Type.toString ty)

^ "\ndefinition type: " ^ (Type.toString defnTy))

end

and checkExpList exps env = map (fn exp => checkExp exp env) exps

Figure 6: Definitions of type checking functions checkExp and checkExpList.

14

signature TYPE_CHECK = sig

exception TypeCheckError of string

(* Exception raised when type checking error encountered *)

val checkProg : AST.Program -> Type

(* Returns the type of a well-typed program. Raises TypeCheckError

if the program is not well-typed. *)

val checkExp : AST.Exp -> Type Ident.Env.env -> Type

(* Returns the type of a well-typed expression relative to the

given type environment. Raises TypeCheckError if the expression

is not well-typed relative to the type environment *)

end

structure TypeCheck : TYPE_CHECK = struct

local open AST Type in

exception TypeCheckError of string

structure TEnv = Ident.Env (* abbreviation *)

fun checkProg(Prog(formals,body)) =

checkExp body (TEnv.extend(formals,

List.map (fn _ => IntTy) formals,

TEnv.empty))

and checkExp ... (* definition given in Figure 3 *)

and checkExpList ... (* definition given in Figure 3 *)

and typeApply (ratorTy as (ArrowTy(formalTys,resultTy))) actualTys =

if not (List.length(formalTys) = List.length(actualTys)) then

raise TypeCheckError

("funapp: mismatch between number of formals ("

^ (Int.toString (List.length(formalTys)))

^ ") and number of actuals ("

^ (Int.toString (List.length(actualTys)))

^ ")")

else (case ListOps.some2 (fn(fty,aty) => not(Type.equal(fty,aty)))

formalTys

actualTys of

NONE => resultTy

| SOME(fty,aty) =>

raise TypeCheckError

("funapp: formal type doesn’t match actual type.\n"

^ "Expected: " ^ (Type.toString fty)

^ "\nActual: " ^ (Type.toString aty))

)

| typeApply ratorTy _ =

raise TypeCheckError

("funapp: attempt to apply non function --\n"

^ "Rator type: " ^ (Type.toString ratorTy))

end (* local *)

end (* struct *)

Figure 7: SML definition of HOFLEMT type checker.

15

(* Primitive descriptor for + *)

PDesc(Add,

fn [IntTy,IntTy] => IntTy

| tys => typeMismatch(Add, [IntTy,IntTy], tys),

fn [IntVal(i1), IntVal(i2)] => IntVal(i1 + i2)

)

(* Primitive descriptor for < *)

PDesc(LT,

fn [IntTy,IntTy] => BoolTy

| tys => typeMismatch(LT, [IntTy,IntTy], tys),

fn [IntVal(i1), IntVal(i2)] => BoolVal(i1 < i2)

)

(* Primitive descriptor for prepend *)

PDesc(Prepend,

fn [ty1,ListTy(ty2)] =>

if Type.equal(ty1,ty2) then

ListTy(ty2)

else

raise PrimTypeCheckError

("prepend: type of prepended element does not\n"

^ "match component type of list\n"

^ "Prepended element type: " ^ (Type.toString ty1)

^ "\nList component type: " ^ (Type.toString ty2)

^ "\n")

| tys => raise PrimTypeCheckError

("prepend: wrong argument types "

^ (typeListToString(tys))),

fn [x,ListVal(xs)] => ListVal(x::xs)

)

(* Primitive descriptor for head *)

PDesc(Head,

fn [ListTy(ty)] => ty

| tys => raise PrimTypeCheckError

("head: wrong argument types "

^ (typeListToString(tys))),

fn [ListVal([])] => raise PrimEvalError

("attempt to take head of empty list")

| [ListVal(x::xs)] => x

)

Figure 8: Sample primitive descriptors from PrimopEnv.

16

