
CS251 Programming Languages Handout # 17
Prof. Lyn Turbak February 16, 2004
Wellesley College

Problem Set 3
Due: 6pm Saturday, February 21

Overview:
The purpose of this assignment is to give you practice with sum-of-product datatypes, s-

expressions, and modules in Ocaml. You will do this in the context of implementing a set datatype
in three different ways.

Reading:

• Handout #8 (Jason Hickey’s Ocaml tutorial): Chapters 6, 7, 10 (ignore 10.4), and 11.

• Handout #15: Datatypes and Data Abstraction in Ocaml.

Working Together:
Reminder: if you worked with a partner on PS1 or PS2 and want to work with a partner on

this assignment, you must choose a different partner.

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 6pm on the due date. The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet) indicating the time
that you (and your partner, if you are working with one) spent on the parts of the assignment.

2. your final version of BSTSet.ml for Problem 1;

3. your final version of OperationTreeSet.ml for Problem 2;

4. your final version of PredSet.ml for Problem 3a;

5. your pencil-and-paper answers to Problem 3b;

Each team should also submit a single softcopy (consisting of your final ps3 directory) to the
drop directory ~cs251/drop/p3/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet). To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/username/cs251

cp -R ps3 ~cs251/drop/ps3/username/

1

Problem 1 [50]: BSTSet
In this problem, you will flesh out an implementation of sets using a binary search tree (BST)

representation. Your implementation should match the SET signature presented in Fig. 1, which is
discussed in Handout #15. To represent binary trees, you should use the Bintreemodule discussed
in Handout #15, whose signature is presented in fig:bintree-sig.
Recall that a BST is a binary tree in which the following BST conditions are satisfied at every

non-leaf node Node(l,v,r):

• all values in l are strictly less than v.

• all values in r are strictly greater than v.

We assume that all orderings are determined via Ocaml’s implicit value ordering using <, >, etc.
For example, below are some of the many possible BSTs containing the numbers 1 through 7. Note
that a BST is not required to be balanced in any way.

1

2

3

4

5

6

7

3

1

2

6

5

4

7

4

2

1 3

6

5 7

6

2

1 4

3 5

7

7

6

5

4

3

2

1

You should write all your definitions in the skeleton of the BSTSet module, which is in the file
~/cs251/ps3/BSTSet.ml. This module has the form:

module BSTSet : SET = struct

open Bintree

type ’a set = ’a bintree

function declarations

end

The declaration open Bintree makes all the declarations in the Bintree module (including the
bintree datatype, the Leaf and Node constructors, and all the functions in the BINTREE signature)
available without qualification. That is, you can write Node rather than Bintree.Node, map rather
than Bintree.map, etc.

2

module type SET = sig

type ’a set

val empty : ’a set (* the empty set *)

val singleton : ’a -> ’a set (* a set with one element *)

val insert : ’a -> ’a set -> ’a set (* insert elt into given set *)

val delete : ’a -> ’a set -> ’a set (* delete elt from given set *)

val member : ’a -> ’a set -> bool (* is elt a member of given set? *)

val union: ’a set -> ’a set -> ’a set (* union of two sets *)

val intersection: ’a set -> ’a set -> ’a set (* interscetion of two sets *)

val difference: ’a set -> ’a set -> ’a set (* difference of two sets *)

val fromList : ’a list -> ’a set (* create a set from a list *)

val toList : ’a set -> ’a list (* list all set elts, sorted low to high *)

val toSexp : (’a -> Sexp.sexp)

-> ’a set -> Sexp.sexp (* return an s-expression rep. of a list *)

val fromSexp : (Sexp.sexp -> ’a)

-> Sexp.sexp -> ’a set (* return an s-expression rep. of a list *)

val toString : (’a -> string)

-> ’a set -> string (* string representation of the set *)

end

Figure 1: The SET signature.

module type BINTREE = sig

type ’a bintree = Leaf | Node of ’a bintree * ’a * ’a bintree

val int_tree : int bintree

val string_tree : string bintree

val map : (’a -> ’b) -> ’a bintree -> ’b bintree

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a

val nodes : ’a bintree -> int

val height : ’a bintree -> int

val sum : int bintree -> int

val prelist : ’a bintree -> ’a list

val inlist : ’a bintree -> ’a list

val postlist : ’a bintree -> ’a list

val toString : (’a -> string) -> ’a bintree -> string

end

Figure 2: The BINTREE signature.

3

Notes:

• As always, begin the problem set with the following Linux commands:

cd ~/cs251

cvs update -d

• Before beginning your coding, you might wish to review how elements are inserted and deleted
from BSTs by consulting your CS230 notes or any of the Java data structure books in SCI
173. In particular, deletion of the value of a node with two non-leaf subtrees is tricky and
requires careful handling.

• In your function declarations, you may refer to other functions in BSTSet as long as they are
either (1) defined above the current function or (2) defined in the same recursive collection as
the current function. (This is particularly helpful in union, intersection, and difference,
where it is helpful to use the toList function to process all of the elements in one of the
set parameters.) You may need to reorder the declarations or organize them into recursive
collections to make this happen.

• You may define any auxiliary functions you find helpful. Make sure that these are defined
above where you need them or in the same recursive scope where you need them. Because
of signature matching in the declaration module BSTSet : SET = . . ., you will not be able
to refer to any of your auxiliary functions outside the module. If you want to test your
auxiliary functions, you will need to temporarily remove the : SET from the declaration.
(But remember to put it back later!).

• Because signature matching makes the set type abstract, you cannot inspect the tree struc-
ture of your examples unless you temporarily remove the : SET from the declaration of
BSTSet.

• You are welcome to use functions from other modules, especially the List module. You will
need to explicitly qualify such references – e.g., List.map.

• The toString function should use the toString function of the Bintree module. For exam-
ple, suppose that s is the set defined as follows:

let set = insert 3 (insert 7 (insert 9 (insert 1 (singleton 5))))

Then BSTSet.toString string_of_int s should return the string:

"((* 1 (* 3 *)) 5 ((* 7 *) 9 *))"

• In toSexp and fromSexp, the following s-expression notation for BSTs should be used:

– A (top-level) leaf is represented as ().

– The default representation of a node is (lsexp vsexp rsexp), where vsexp is the s-
expression notation for the node value and lsexp and rsexp are s-expression notations
for the left and right subtrees. The following optimizations are used to reduce the size
of node representations:

∗ If both the left and right subtrees of a node are leaves, then the node is represented
as just vsexp.1

1It is assumed that vsexp is not delimited by parens, else the notation might be ambiguous.

4

∗ If exactly one of the left or right subtrees of a node is a leaf, then the representation
for the leaf subtree is omitted from (lsexp vsexp rsexp) — i.e., it should have
the form (vsexp rsexp) or (lsexp vsexp).

For example, for the example s mentioned above, we have:

StringUtils.print (Sexp.sexpToString (toSexp (fun x -> Sexp.Int x) s));;

((1 (3)) 5 ((7) 9))- : unit = ()

We can test fromSexp as follows:

toList (fromSexp (fun sexp -> match sexp with

Sexp.Int i -> i

| _ -> raise (Failure "wrong form"))

(Sexp.stringToSexp "((1 (3)) 5 ((7) 9))"));;

- : int list = [1; 3; 5; 7; 9]

• To load the BSTSet module and the modules it depends on, execute the following Ocaml

commands:

#cd "/home/your-username/cs251/ps3";;

#use "load-sets.ml";;

Executing the second line will cause lots of declarations to be displayed on the screen. Verify
that the declaration module BSTSet : SET is included in the declarations (near the
end, right after module SortedListSet : SET). If this declaration does not appear and is
instead replaced by an error message, it means that your BSTSet module has a syntax error
or type error. You must fix any such errors before you attempt to test your module.

• When testing your BSTSet functions by hand in the top-level interpreter, by default you must
use fully qualified references to the BSTSet functions, as in the following example:

let s = BSTSet.insert 3 (BSTSet.insert 7 (BSTSet.insert 9

(BSTSet.insert 1 (BSTSet.singleton 5))));;

val s : int BSTSet.set = <abstr>

You can shorten this considerably if you first open the BSTSet module within the top-level
interpreter:

open BSTSet;;

let s = insert 3 (insert 7 (insert 9 (insert 1 (singleton 5))));;

val s : int BSTSet.set = <abstr>

Warning: To use the abbreviations, you must reopen the BSTSet module after every time
you execute #use "load-sets.ml". Furthermore, you must redefine any definitions (like
s) every time you reload load-sets.ml (which is why its more convenient to put any such
definitions in a file). Failure to observe these points can lead to confusing interactions in
which your expressions are refering to out-of-date definitions rather than the current ones.
For example, study the interactions in Fig. 3.

• You can perform a suite of automatic tests on your BSTSet implementation by executing
BSTSetTest.testSmall() or BSTSetTest.testBig(). These read in a set of words from
some files and peform various set manipulations that are compared to the results of a standard
reference implementation. For example, see Fig. 4.

The code for these tests is in ~/cs251/sets/SetTest.ml. You do not need to study this code
in order to use it (but may want to in order to better understand how it works).

5

#use "load-sets.ml";;

(* lots of declarations omitted. *)

open BSTSet;;

let s = insert 3 (insert 7 (insert 9 (insert 1 (singleton 5))));;

val s : int BSTSet.set = <abstr>

StringUtils.print (Sexp.sexpToString (toSexp (fun x -> Sexp.Int x) s));;

((9 (7)) 5 ((3) 1))- : unit = () (* Oops, left and right subtrees are swapped *)

(* Edit the source code to fix the bug, and then reload *)

#use "load-sets.ml";;

(* lots of declarations omitted. *)

StringUtils.print (Sexp.sexpToString (toSexp (fun x -> Sexp.Int x) s));;

((9 (7)) 5 ((3) 1))- : unit = ()

(* Bug is still there! Ah -- forget to reopen BSTSet and redefine s *)

open BSTSet;;

let s = insert 3 (insert 7 (insert 9 (insert 1 (singleton 5))));;

val s : int BSTSet.set = <abstr>

StringUtils.print (Sexp.sexpToString (toSexp (fun x -> Sexp.Int x) s));;

((1 (3) 5 ((7) 9)))- : unit = () (* Now test shows that bug is fixed *)

Figure 3: Interactions highlighting the importance of reopening modules and redefining examples
after reloading modules.

BSTSetTest.testSmall();;

Reading ../text/green-eggs-init.txt into list ...done

List has 43 elements

Creating set from list ...done

Reading ../text/cat-in-hat-init.txt into list ...done

List has 66 elements

Creating set from list ...done

Reading ../text/green-eggs-init.txt into list ...done

List has 43 elements

Creating set from list ...done

Reading ../text/cat-in-hat-init.txt into list ...done

List has 66 elements

Creating set from list ...done

Testing insert ...OK!

Testing delete ...OK!

Testing union ...OK!

Testing intersection ...OK!

Testing difference ...OK!

Testing toSexp/fromSexp ...OK!

- : unit = ()

Figure 4: Sample use of BSTSetTest.testSmall().

6

Problem 2 [25]: OperationTreeSet
A very different way of representing a set as a tree is to remember the structure of the set

operations empty, insert, delete, union, intersection, and difference used to create the set.
For example, consider the set t create as follows:

let t = (delete 4 (difference (union (union (insert 1 empty)

(insert 4 empty))

(union (insert 7 empty)

(insert 4 empty)))

(intersection (insert 1 empty)

(union (insert 1 empty)

(insert 6 empty)))))

Abstractly, t is the singleton set {7}. But one concrete representation of t is the following operation
tree:

Delete

4 Difference

Union

Union

Insert

1 Empty

Insert

4 Empty

Union

Insert

7 Empty

Insert

4 Empty

Intersection

Insert

1 Empty

Union

Insert

1 Empty

Insert

6 Empty

One advantage of using such operation trees to represent sets is that the empty, insert, delete,
union, difference, and intersection operations are very cheap – they just create a new tree
node with the operands as subtrees, and thus take constant time and space! But other operations,
such as member and toList, can be more expensive than in other implementations.
In this problem, you are asked to flesh out the missing operations in the skeleton of the

OperationTreeSet module in Fig. 5. In this module, the set datatype is create by constructors
Empty, Insert, Delete, Union, Intersection, and Difference. The empty, singleton, insert,
delete, union, intersection, difference, and toString operations are trival and have already
been implemented. You are responsible for fleshing out the definitions of the member, toList,
fromList, toSexp, and fromSexp operations.

Notes:

• In toList, you may find it helpful to use functions in the ListSetUtils module. (These are
also used in Handout #15 to implement SortedListSet.) The declaration

module LSU = ListSetUtils

in OperationTreeSet allows you to use the short prefix LSU rather than the long prefix
ListSetUtils to access these functions.

• In fromList, for lists with ≥ 2 elements, you should split first split the list into two (nearly)
equal sublists (using alts from PS1 & PS2, say) and union the results of turning the sublists
into sets. This yields a height-balanced operation tree.

7

• In toSexp, you should represent each non-empty node in the operation tree as an sexpression
list whose first element is a lowercase symbol naming the operator and the rest of whose
elements are the operands. An empty node should be represented as the symbol empty For
example, the printed representation of the s-expression shown at the beginning of this problem
is:

(delete 4 (difference (union (union (insert 1 empty)

(insert 4 empty))

(union (insert 7 empty)

(insert 4 empty)))

(intersection (insert 1 empty)

(union (insert 1 empty)

(insert 6 empty)))))

Note that this printed representation is a legalOcaml expression that, when evaluated, would
re-create the tree!

• In fromSexp, you can used nested patterns to succinctly describe how to convert s-expressions
of the form described above into a constructor tree for the set datatype. If an inappropriate
s-expression is encountered, fromSexp should raise an exception using the following code:

raise (Failure ("OperationTreeSet.fromExp -- can’t handle sexp:\n"

^ (Sexp.sexpToString sexp)))

• You can perform a suite of automatic tests on your OperationTreeSet implementation by
executing OperationTreeSet.testSmall() or OperationTreeSet.testBig().

8

module OperationTreeSet : SET = struct

module LSU = ListSetUtils

type ’a set =

Empty

| Insert of ’a * ’a set

| Delete of ’a * ’a set

| Union of ’a set * ’a set

| Intersection of ’a set * ’a set

| Difference of ’a set * ’a set

let empty = Empty

let insert x s = Insert(x,s)

let singleton x = Insert(x, Empty)

let delete x s = Delete(x, s)

let union s1 s2 = Union(s1,s2)

let intersection s1 s2 = Intersection(s1,s2)

let difference s1 s2 = Difference(s1,s2)

let rec member x s = false (* Replace this stub *)

let rec toList s = [] (* Replace this stub *)

(* You may use operations in ListSetUtils, using the abbreviation LSU

defined above. *)

let rec fromList xs = Empty (* Replace this stub *)

(* You should define this in terms of a "balanced" tree of Union,

Insert, and Empty nodes *)

let rec toSexp eltToSexp s = Sexp.Seq [] (* Replace this stub *)

(* Returns an s-expression that shows the structure of the tree.

See the PS3 description for examples *)

let rec fromSexp eltFromSexp sexp = Empty (* Replace this stub *)

let rec toString eltToString s =

StringUtils.listToString eltToString (toList s)

end

Figure 5: Skeleton of the OperationTreeSet module.

9

Problem 3 [25]: Functional Sets
InOcaml, we can implement abstract data types in terms of familiar structures like lists, arrays,

and trees. But we can also use functions to implement data types. Here we show a compelling
example of using functions to implement sets. Rather than using the SET signature used in the
previous two problems, we will use the somewhat different PRED_SET signature shown in Fig. 6.
Here is a comparison of PRED_SET with SET:

• It has the same empty, singleton, member, union, intersection, difference, and fromList
operations as SET.

• It does not support the toList, toSexp, fromSexp, or toString operations of SET.

• It has two operations that SET does not have: fromPred and toPred. These allow converting
between predicates and sets.

module type PRED_SET = sig

type ’a set

val empty: ’a set

val singleton: ’a -> ’a set

val member: ’a -> ’a set -> bool

val union: ’a set -> ’a set -> ’a set

val intersection: ’a set -> ’a set -> ’a set

val difference:’a set -> ’a set -> ’a set

val fromList: ’a list -> ’a set

val fromPred: (’a -> bool) -> ’a set

val toPred: ’a set -> (’a -> bool)

end

Figure 6: A signature for a version of sets based upon predicates.

The fromPred and toPred operations are based on the observation that a membership predicate
describes exactly which elements are in the set and which are not. Consider the following example:

let ps1 = fromPred (fun x -> (x = 2) || (x = 3) || (x = 5));;

val ps1 : int PredSet.set = <abstr>

member 3 s;;

- : bool = true

member 5 s;;

- : bool = true

member 4 s;;

- : bool = false

member 100 s;;

- : bool = false

The set ps1 consists of exactly those elements satisfying the predicate passed to fromPred – in this
case, the integers 2, 3, and 5.
Defining sets in terms of predicates has many benefits. Most important, it is easy to specify sets

that have infinite numbers of elements! For example, the set of all even integers can be expressed
as:

fromPred (fun x -> (x mod 2) = 0)

This predicate is true of even integers, but is false for all other integers. Te set of all values of
a given type is expressed as fromPred (fun x -> true). Many large finite sets are also easy to
specify. For example, the set of all integers between 251 and 6821 (inclusive) can be expressed as:

10

fromPred (fun x -> (x >= 251) && (x <= 6821))

a. [15]: PredSet

The most obvious way to implement the PRED_SET signature is in a module PredSet that defines
the set type as a predicate:

type ’a set = ’a -> bool

Based on this representation, flesh out all the function definitions in the the PredSet module in
the file ~/cs251/ps3/PredSet.ml. Each of your definitions should be a one-liner. (For fromList,
you may use operations from the List module.) Convince yourself that your implementation is
correct by testing some simple examples.

b. [10]: Other Functions

In this problem, you are asked to consider whether it is possible to implement the SET and
PRED_SET signatures if we extend them with additional functionality. Explain all your answers.

1. Can we add to the PRED_SET signature the following function?

val toList: ’a set -> ’a list

Returns a list of all the elements in set.

2. Can we add to the SET signature the following function?

val fromPred: (’a -> bool) -> ’a set

Returns a set of all elements satsifying the given predicate.

3. Can we add the following function to the SET signature? To the PRED_SET signature?

val isEmpty: ’a set -> bool

Returns true if the set is empty, and false otherwise.

4. Can we add the following function to the SET signature? To the PRED_SET signature?

val complement: ’a set -> ’a set

Returns the complement of the given set – i.e., all the value of type ’a that are not in
the given set.

5. Can we add the following function to the SET signature? To the PRED_SET signature?

val isSubset: ’a set -> ’a set -> ’a set

Returns true if all of the elements of the first set parameter are are also elements of
the second set parameter, and false otherwise.

11

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 3
Due 6pm Saturday, February 21

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.

Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading your problem set.

Part Time Score

General Reading

Problem 1 [50]

Problem 2 [25]

Problem 3 [25]

Total

12

