
CS251 Programming Languages Handout # 34

Prof. Lyn Turbak April 21, 2005

Wellesley College

Hofl: First-class Functions and Scoping

This is a preliminary version that does not include a discussion of bindrec.

Hofl (Higher Order Functional Language) is a language that extends Valex with first-class
functions and a recursive binding construct. We study Hofl to understand the design and im-
plementation issues involving first-class functions, particularly the notions of static vs. dynamic
scoping and recursive binding. Later, we will consider languages that support more restrictive
notions of functions than Hofl.
Although Hofl is a “toy” language, it packs a good amount of expressive punch, and could be

used for many “real” programming purposes. Indeed, it is very similar to the Scheme programming
language, and it is powerful enough to write interpreters for all the mini-languages we have studied,
including Hofl itself!

1 An Overview of Hofl

The Hofl language extends Valex with the following features:

1. Anonymous first-class curried functions and a means of applying these functions;

2. A bindrec form for definining mutually recursive values (typically functions);

3. A load form for loading definitions from files.

The full grammar of Hofl is presented in Fig. 1. The syntactic sugar of Hofl is defined in Fig. 2.

1.1 Abstractions and Function Applications

In Hofl, anonymous first-class functions are created via

(abs Iformal Ebody)

This denotes a function of a single argument Iformal that computes Ebody . It corresponds to the
Ocaml notation fun Iformal -> Ebody .
Function application is expressed by the parenthesized notation (Erator Erand), where Erator

is an arbitrary expression that denotes a function, and Erand denotes the operand value to which
the function is applied. For example:

hofl> ((abs x (* x x)) (+ 1 2))

9

hofl> ((abs f (f 5)) (abs x (* x x)))

25

hofl> ((abs f (f 5)) ((abs x (abs y (+ x y))) 12))

17

The second and third examples highlight the first-class nature of Hofl function values.
The notation (fun (I1...In) Ebody) is syntactic sugar for curried abstractions and the nota-

tion (Erator E1...En) for n ≥ 2 is syntactic sugar for curried applications. For example,

1

P ∈ Program

P → (hofl (Iformal1
...Iformaln

) Ebody) Kernel Program
P → (hofl (Iformal1

...Iformaln
) Ebody D1 . . . Dk) Sugared Program

D ∈ Definition

D → (def Iname Ebody) Basic Definition
D → (def (IfcnName Iformal1

...Iformaln
) Ebody) Sugared Function Definition

D → (load filename) File Load

E ∈ Expression

Kernel Expressions:
E → L Literal
E → I Variable Reference
E → (if Etest Ethen Eelse) Conditional
E → (Orator Erand1

. . . Erandn
) Primitive Application

E → (abs Iformal Ebody) Function Abstraction
E → (Erator Erand) Function Application
E → (bindrec ((Iname1

Edefn1
) . . . (Inamen

Edefnn
)) Ebody) Local Recursion

Sugar Expressions:
E → (fun (I1...In) Ebody), where n ≥ 0 Curried Function
E → (Erator Erand1

. . . Erandn
), where n ≥ 2 Curried Application

E → (Erator) Nullary Application
E → (bind Iname Edefn Ebody) Local Binding
E → (bindseq ((Iname1

Edefn1
) . . . (Inamen

Edefnn
)) Ebody) Sequential Binding

E → (bindpar ((Iname1
Edefn1

) . . . (Inamen
Edefnn

)) Ebody) Parallel Binding
E → (&& E1 E2) Short-Circuit And
E → (|| E1 E2) Short-Circuit Or
E → (cond (Etest1 Ebody1

) . . . (Etestn
Ebodyn

) (else Edefault)) Multi-branch Conditional
E → (list E1 . . . En) List
E → (quote S) Quoted Expression

S ∈ S-expression

S → N S-expression Integer
S → C S-expression Character
S → R S-expression String
S → I S-expression Symbol
S → (S1 . . . Sn) S-expression List

L ∈ Literal

L → N Numeric Literal
L → B Boolean Literal
L → C Character Literal
L → R String Literal
L → (sym I) Symbolic Literal
L → #e Empty List Literal

O ∈ Primitive Operator: e.g., +, <=, and, not, prep
F ∈ Function Name: e.g., f, sqr, +-and-*
I ∈ Identifier: e.g., a, captain, fib_n-2
N ∈ Integer: e.g., 3, -17
B ∈ Boolean: #t and #f

C ∈ Character: ’a’, ’B’, ’7’, ’\n’, ’´’’\\’
R ∈ String : "foo", "Hello there!", "The string \"bar\""

Figure 1: Grammar for the Hofl langauge.2

(hofl (Iformal1
...Iformaln

) Ebody (def I1 E1) . . . (def In En))

; (hofl (Iformal1
...Iformaln

) (bindrec ((I1 E1) . . . (In En)) Ebody))

(def (Ifcn I1...In) Ebody) ; (def Ifcn (fun (I1...In) Ebody))

(fun (I1 I2...In) Ebody) ; (abs I1 (fun (I2...In) Ebody)), where n ≥ 2
(fun (I) Ebody) ; (abs I Ebody)

(fun () Ebody) ; (abs I Ebody), where I is fresh

(Erator Erand1
Erand2

. . . Erandn
) ; ((Erator Erand1

) Erand2
. . . Erandn

), where n ≥ 2
(Erator) ; (Erator #f)

(bind Iname Edefn Ebody) ; ((abs Iname Ebody) Edefn)

(bindpar ((I1 E1) . . . (In En)) Ebody) ; ((fun (I1...In) Ebody) E1 . . . En)

(bindseq ((I E) . . .) Ebody) ; (bind I E (bindseq (. . .) Ebody))

(bindseq () Ebody) ; Ebody

(&& Erand1 Erand2) ; (if Erand1 Erand2 #f)

(|| Erand1 Erand2) ; (if Erand1 #t Erand2)

(cond (else Edefault)) ; Edefault

(cond (Etest Edefault) . . .) ; (if Etest Edefault (cond . . .))

(list) ; #e

(list Ehd . . .) ; (prep Ehd (list . . .))

(quote int)) ; int

(quote char)) ; char

(quote string)) ; string

(quote #t) ; #t

(quote #f) ; #f

(quote #e) ; #e

(quote sym) ; (sym sym)

(quote (sexp1 . . . sexpn)) ; (list (quote sexp1) . . . (quote sexpn))

Figure 2: Desugaring rules for Hofl.

3

((fun (a b x) (+ (* a x) b)) 2 3 4)

is syntactic sugar for

((((abs a (abs b (abs x (+ (* a x) b)))) 2) 3) 4)

Nullary functions and applications are also defined as sugar. For example, ((fun () E)) is syn-
tactic sugar for ((abs I E) #f), where I is a fresh variable. Note that #f is used as an arbitrary
argument value in this desugaring.
In Hofl, bind is not a kernel form but is syntactic sugar for the application of a manifest

abstraction. Unlike in Valex, in Hofl the bindpar desugaring can be expressed via a high-level
rule (also involving the application of a manifest abstraction). For example,

(bind c (+ a b) (* c c))

is sugar for

((abs c (* c c)) (+ a b))

and

(bindpar ((a (+ a b)) (b (- a b))) (* a b))

is sugar for

((fun (a b) (* a b)) (+ a b) (- a b)),

which is itself sugar for

(((abs a (abs b (* a b))) (+ a b)) (- a b)).

1.2 Local Recursive Bindings

Singly and mutually recursive functions can be defined anywhere (not just at top level) via the
bindrec construct:

(bindrec ((Iname1
Edefn1

) . . . (Inamen Edefnn
)) Ebody)

The bindrec construct is similar to bindpar and bindseq except that the scope of Iname1 . . .Inamen
includes all definition expressions Edefn1 . . .Edefnn as well as Ebody . For example, here is a definition
of a recursive factorial function:

(hofl (x)

(bindrec ((fact (abs (n)

(if (= n 0)

1

(* n (fact (- n 1)))))))

(fact x)))

Here is an example involving the mutual recursion of two functions, even? and odd?:

4

(hofl (n)

(bindrec ((even? (abs (x)

(if (= x 0)

#t

(odd? (- x 1)))))

(odd? (abs (y)

(if (= y 0)

#f

(even? (- y 1))))))

(list (even? n) (odd? n))))

To emphasize that bindrec need not be at top-level, here is program that abstracts over the
even?/odd? example from above:

(hofl (n)

(bind tester (abs (bool)

(bindrec ((test1 (fun (x)

(if (= x 0)

bool

(test2 (- x 1)))))

(test2 (abs (y)

(if (= y 0)

(not bool)

(test1 (- y 1))))))))

(list ((tester #t) n) ((tester #f) n))))

To simplify the definition of values, especially functions, at top-level Hofl supports syntactic
sugar for top-level program definitions. For example, the fact and even?/odd? examples can also
be expressed as follows:

(hofl (x) (fact x)

(def (fact n)

(if (= n 0)

1

(* n (fact (- n 1))))))

(hofl (n) (list (even? n) (odd? n))

(def (even? x)

(if (= x 0)

#t

(odd? (- x 1))))

(def (odd? y)

(if (= y 0)

#f

(even? (- y 1)))))

The Hofl read-eval-print loop (REPL) accepts definitions as well as expressions. All definitions
are considered to be mutually recursive. Any expression submitted to the REPL is evaluated in the
context of a bindrec derived from all the definitions submitted so far. If there has been more than
one definition with a given name, the most recent definition with that name is used. For example,
consider the following sequence of REPL interactions:

hofl> (def three (+ 1 2))

three

For a definition, the response of the interpreter is the defined name. This can be viewed as an

5

acknowledgement that the definition has been submitted. The body expression of the definition is
not evaluated yet, so if it contains an error or infinite loop, there will be no indication of this until
an expression is submitted to the REPL later.

hofl> (+ three 4)

7

When the above expression is submitted, the result is the value of the following expression:

(bindrec ((three (+ 1 2)))

(+ three 4))

Now let’s define a function and then invoke it:

hofl> (def (sq x) (* x x))

sq

hofl> (sq three)

9

The value 9 is the result of evaluating the following expression:

(bindrec ((three (+ 1 2))

(sq (abs x (* x x))))

(sq three))

Let’s define one more function and invoke it:

hofl> (def (sos a b) (+ (sq a) (sq b)))

sos

hofl> (sos three 4)

25

The value 25 is the resulf of evaluating the following expression:

(bindrec ((three (+ 1 2))

(sq (abs x (* x x)))

(sos (abs a (abs b (+ (sq a) (sq b))))))

((sos three) 4))

Note that it wasn’t necessary to define sq before sos. They could have been defined in the opposite
order, as long as no attempt was made to evaluate an expression containing sos before sq was
defined.

1.3 Loading Definitions From Files

Typing sequences of definitions into the Hofl REPL can be tedious for any program that contains
more than a few definitions. To facilitate the construction and testing of complex programs, Hofl

supports the loading of definitions from files. Suppose that filename is a string literal (i.e., a
character sequence delimited by double quotes) naming a file that contains a sequence of Hofl

definitions. In the REPL, entering the directive (load filename) has the same effect as manually
entering all the definitions in the file named filename. For example, suppose that the file named
"option.hfl" contains the definitions in Fig. 3 and "list-utils.hfl" contains the definitions in
Fig. 4. Then we can have the following REPL interactions:

6

(def none (sym *none*)) ; Use the symbol *NONE* to represent the none value.

(def (none? v)

(if (sym? v)

(sym= v none)

#f))

(def (some? v) (not (none? v)))

Figure 3: The contents of the file "option.hfl" which contains an Ocaml-like option data struc-
ture express in Hofl.

hofl> (load "option.hfl")

none

none?

some?

When a load directive is entered, the names of all definitions in the loaded file are displayed. These
definitions are not evaluated yet, only collected for later.

hofl> (none? none)

#t

hofl> (some? none)

#f

hofl> (load "list-utils.hfl")

length

rev

nth

first

second

third

fourth

map

filter

gen

range

foldr

foldr2

hofl> (range 3 7)

(list 3 4 5 6 7)

hofl> (map (fun (x) (* x x)) (range 3 7))

(list 9 16 25 36 49)

hofl> (foldr (fun (a b) (+ a b)) 0 (range 3 7))

25

hofl> (filter some? (map (fun (x) (if (= 0 (% x 2)) x none)) (range 3 7)))p

(list 4 6)

In Hofl, a load directive may appear whereever a definition may appear. It denotes the
sequence of definitions contains in the named file. For example, loaded files may themselves con-
tain load directives for loading other files. The environment implementation in Fig. 5 loads the

7

(def (length xs)

(if (empty? xs)

0

(+ 1 (length (tail xs)))))

(def (rev xs)

(bindrec ((loop (fun (old new)

(if (empty? old)

new

(loop (tail old) (prep (head old) new))))))

(loop xs #e)))

(def (nth n xs) ; Returns the nth element of a list (1-indexed)

(if (= n 1)

(head xs)

(nth (- n 1) (tail xs))))

(def first (nth 1))

(def second (nth 2))

(def third (nth 3))

(def fourth (nth 4))

(def (map f xs)

(if (empty? xs)

#e

(prep (f (head xs))

(map f (tail xs)))))

(def (filter pred xs)

(cond ((empty? xs) #e)

((pred (head xs))

(prep (head xs) (filter pred (tail xs))))

(else (filter pred (tail xs)))))

(def (gen next done? seed)

(if (done? seed)

#e

(prep seed (gen next done? (next seed)))))

(def (range lo hi) (gen (fun (x) (+ x 1)) (fun (y) (> y hi)) lo))

(def (foldr binop null xs)

(if (empty? xs)

null

(binop (head xs)

(foldr binop null (tail xs)))))

(def (foldr2 ternop null xs ys)

(if (|| (empty? xs) (empty? ys))

null

(ternop (head xs)

(head ys)

(foldr2 ternop null (tail xs) (tail ys)))))

Figure 4: The contents of the file "list-utils.hfl" which contains some classic list functions
expressed in Hofl.

8

(load "option.hfl")

(load "list-utils.hfl")

(def env-empty (fun (name) none))

(def (env-bind name val env)

(fun (n)

(if (sym= n name)

val

(env n))))

(def (env-bind-all names vals env)

(foldr2 env-bind env names vals))

(def (env-lookup name env) (env name))

Figure 5: The contents of the file "env.hfl", which contains an functional implementation of
environments expressed in Hofl.

files "option.hfl" and "list-utils.hfl". load directives may also appear directly in a Hofl

program. For example:

(hofl (a b)

(filter some? (map (fun (x) (if (= 0 (% x 2)) x none)) (range a b)))

(load "option.hfl")

(load "list-utils.hfl"))

When applied to the argument list [3;7], this program yields a Hofl list containing the integers
4 and 6

1.4 A Bindex Interpreter Written in Hofl

To illustrate that Hofl is suitable for defining complex programs, in Figs. 6 and 7 we present a
complete interpreter for the Bindex language written in Hofl. Bindex expressions and programs
are represented as tree structures encoded via Hofl lists, symbols, and integers. For example, the
Bindex averaging program can be expressed as the following Hofl list:

(list (sym bindex)

(list (sym a) (sym b)) ; formals

(list (sym /) ; body

(list (sym +) (sym a) (sym b))

2))

Hofl’s Lisp-inspired quote sugar allows such Bindex programs to be written more perspicuously.
For example, the above can be expressed as follows using quote:

(quote (bindex (a b) (/ (+ a b) 2)))

Here are some examples of the Hofl-based Bindex interpreter in action:

hofl> (load "bindex.hfl")

... lots of names omitted ...

hofl> (run (quote (bindex (x) (* x x))) (list 5))

25

9

hofl> (run (quote (bindex (a b) (/ (+ a b) 2))) (list 5 15))

10

It is not difficult to extend the Bindex interpreter to be a full-fledged Hofl interpreter. If we
did this, we would have a Hofl interpreter defined in Hofl. An interpreter for a language written
in that language is called ameta-circular interpreter. There is nothing strange or ill-defined about
a meta-circular interpreter. Keep in mind that in order to execute a meta-circular interpreter for
a language L, we must have an existing working implementation of L. For example, to execute a
meta-circular Hofl interpreter, we could use a Hofl interpreter defined in Ocaml.

(load "env.hfl") ; This also loads list-utils.hfl and option.hfl

(def (run pgm args)

(bind fmls (pgm-formals pgm)

(if (not (= (length fmls) (length args)))

(error "Mismatch between expected and actual arguments"

(list fmls args))

(eval (pgm-body pgm)

(env-bind-all fmls args env-empty)))))

(def (eval exp env)

(cond ((lit? exp) (lit-value exp))

((var? exp)

(bind val (env-lookup (var-name exp) env)

(if (none? val)

(error "Unbound variable" exp)

val)))

((binapp? exp)

(binapply (binapp-op exp)

(eval (binapp-rand1 exp) env)

(eval (binapp-rand2 exp) env)))

((bind? exp)

(eval (bind-body exp)

(env-bind (bind-name exp)

(eval (bind-defn exp) env)

env)))

(else (error "Invalid expression" exp))))

(def (binapply op x y)

(cond ((sym= op (sym +)) (+ x y))

((sym= op (sym -)) (- x y))

((sym= op (sym *)) (* x y))

((sym= op (sym /)) (if (= y 0) (error "Div by 0" x) (/ x y)))

((sym= op (sym %)) (if (= y 0) (error "Rem by 0" x) (% x y)))

(else (error "Invalid binop" op))))

Figure 6: Environment model interpreter for Bindex expressed in Hofl, part 1.

2 Scoping Mechanisms

In order to understand a program, it is essential to understand the meaning of every name. This
requires being able to reliably answer the following question: given a reference occurrence of a

10

;;;--

;;; Abstract syntax

;;; Programs

(def (pgm? exp)

(&& (list? exp)

(&& (= (length exp) 3)

(sym= (first exp) (sym bindex)))))

(def (pgm-formals exp) (second exp))

(def (pgm-body exp) (third exp))

;;; Expressions

;; Literals

(def (lit? exp) (int? exp))

(def (lit-value exp) exp)

;; Variables

(def (var? exp) (sym? exp))

(def (var-name exp) exp)

;; Binary Applications

(def (binapp? exp)

(&& (list? exp)

(&& (= (length exp) 3)

(binop? (first exp)))))

(def (binapp-op exp) (first exp))

(def (binapp-rand1 exp) (second exp))

(def (binapp-rand2 exp) (third exp))

;; Local Bindings

(def (bind? exp)

(&& (list? exp)

(&& (= (length exp) 4)

(&& (sym=? (first exp) (sym bind))

(sym? (second exp))))))

(def (bind-name exp) (second name))

(def (bind-defn exp) (third name))

(def (bind-body exp) (fourth name))

;; Binary Operators

(def (binop? exp)

(|| (sym= exp (sym +))

(|| (sym= exp (sym -))

(|| (sym= exp (sym *))

(|| (sym= exp (sym /))

(sym= exp (sym %)))))))

Figure 7: Environment model interpreter for Bindex expressed in Hofl, part 2.

11

name, which binding occurrence does it refer to?
In many cases, the connection between reference occurrences and binding occurrences is clear

from the meaning of the binding constructs. For instance, in the Hofl abstraction

(fun (a b) (bind c (+ a b) (div c 2)))

it is clear that the a and b within (+ a b) refer to the parameters of the abstraction and that the
c in (div c 2) refers to the variable introduced by the bind expression.
However, the situation becomes murkier in the presence of functions whose bodies have free

variables. Consider the following Hofl program:

(hofl (a)

(bind add-a (fun (x) (+ x a))

(bind a (+ a 10)

(add-a (* 2 a)))))

The add-a function is defined by the abstraction (fun (x) (+ x a)), which has a free variable
a. The question is: which binding occurrence of a in the program does this free variable refer to?
Does it refer to the program parameter a or the a introduced by the bind expression?
A scoping mechanism determines the binding occurrence in a program associated with a free

variable reference within a function body. In languages with block structure1 and/or higher-order
functions, it is common to encounter functions with free variables. Understanding the scoping
mechanisms of such languages is a prerequisite to understand the meanings of programs written in
these languages.
We will study two scoping mechanisms in the context of the Hofl language: static scoping

and dynamic scoping. To simplify the discussion, here will will only consider Hofl programs
that do not use the bindrec construct. We will study recursive bindings in more detail later.

3 Static Scoping

3.1 Contour Model

In static scoping, the meaning of every variable reference is determined by the lexical contour
boxes introduced in Handout #28 on Bindex. To determine the binding occurrence of any reference
occurrence of a name, find the innermost contour enclosing the reference occurrence that binds the
name. This is the desired binding occurrence.
For example, below is the contour diagram associated with the add-a example. The reference to

a in the expression (+ x a) lies within contour boxes C 1 and C0. C1 does not bind a, but C0 does,
so the a in (+ x a) refers to the a bound by (hofl (a) . . .). Similarly, it can be determined
that:

• the a in (+ a 10) refers to the a bound by (hofl (a) . . .);

• the a in (* 2 a) refers the a bound by (bind a . . .);

• the x in (+ x a) refers to the x bound by (abs (x) . . .).

• the add-a in (add-a (* 2 a)) refers to the add-a bound by (bind add-a . . .).

1A language has block structure if functions can be declared locally within other functions. As we shall see later,

a language can have block structure without having first-class functions.

12

(hofl (a)

 (bind add-a (fun (x) (+ x a))

 (bind a (+ a 10)

 (add-a (* 2 a)))))

C1

C3

C0

C2

Because the meaning of any reference occurrence is apparent from the lexical structure of the
program, static scoping is also known as lexical scoping.
As another example of a contour diagram, consider the contours associated with the following

program containing a create-sub function:

(hofl (n)

 (bind create-sub (fun (n) (fun (x) (- x n)))

 (bindpar ((sub2 (create-sub 2))

 (sub3 (create-sub 3)))

 (bind test (fun (n) (sub2 (sub3 (- n 1))))

 (test (sub3 (+ n 1)))

)

)

)

)

C1

C2

C0

C3

C4

C6

C5

By the rules of static scope:

• the n in (- x n) refers to the n bound by the (fun (n) . . .) of create-sub;

• the n in (- n 1) refers to the n bound by the (fun (n) . . .) of test;

• the n in (+ n 1) refers to the n bound by (hofl (n) . . .).

3.2 Substitution Model

The same substitution model used to explain the evaluation of Ocaml, Bindex, and Valex can be
used to explain the evaluation of statically scoped Hofl expressions that do not contain bindrec.
(Handling bindrec is tricky in the substitution model, and will be considered later.)
For example, suppose we run the program containing the add-a function on the input 3. Then

the substitution process yields:

13

(hofl (a)

(bind add-a (fun (x) (+ x a))

(bind a (+ a 10)

(add-a (* 2 a))))) run on [3]
⇒ (bind add-a (fun (x) (+ x 3))

(bind a (+ 3 10)

(add-a (* 2 a))))

⇒ (bind a 13 ((fun (x) (+ x 3)) (* 2 a)))

⇒ ((fun (x) (+ x 3)) (* 2 13))

⇒ ((fun (x) (+ x 3)) 26)

⇒ (+ 26 3)

⇒ 29

As a second example, suppose we run the program containing the create-sub function on the
input 12. Then the substitution process yields:

(hofl (n)

(bind create-sub (fun (n) (fun (x) (- x n)))

(bindpar ((sub2 (create-sub 2))

(sub3 (create-sub 3)))

(bind test (fun (n) (sub2 (sub3 (- n 1))))

(test (sub3 (+ n 1))))))) run on [12]
⇒ (bind create-sub (fun (n) (fun (x) (- x n)))

(bindpar ((sub2 (create-sub 2))

(sub3 (create-sub 3)))

(bind test (fun (n) (sub2 (sub3 (- n 1))))

(test (sub3 (+ 12 1))))))

⇒ (bindpar ((sub2 ((fun (n) (fun (x) (- x n))) 2))

(sub3 ((fun (n) (fun (x) (- x n))) 3)))

(bind test (fun (n) (sub2 (sub3 (- n 1))))

(test (sub3 13))))

⇒ (bindpar ((sub2 (fun (x) (- x 2)))

(sub3 (fun (x) (- x 3))))

(bind test (fun (n) (sub2 (sub3 (- n 1))))

(test (sub3 13))))

⇒ (bind test (fun (n) ((fun (x) (- x 2)) ((fun (x) (- x 3)) (- n 1))))

(test ((fun (x) (- x 3)) 13))))

⇒ ((fun (n) ((fun (x) (- x 2)) ((fun (x) (- x 3)) (- n 1)))) ((fun (x) (- x 3)) 13))

⇒ ((fun (n) ((fun (x) (- x 2)) ((fun (x) (- x 3)) (- n 1)))) (- 13 3)

⇒ ((fun (n) ((fun (x) (- x 2)) ((fun (x) (- x 3)) (- n 1)))) 10

⇒ ((fun (x) (- x 2)) ((fun (x) (- x 3)) (- 10 1)))

⇒ ((fun (x) (- x 2)) ((fun (x) (- x 3)) 9

⇒ ((fun (x) (- x 2)) (- 9 3))

⇒ ((fun (x) (- x 2)) 6

⇒ (- 6 2)

⇒ 4

We can formalize the Hofl substitution model by defining a substitution model evaluator in
Ocaml. Fig. 9 presents the abstract syntax and values used by the evaluator as well as the
definition of substitution. The evaluator itself is presented in Fig. ??. The third component of a
Fun value, an environment, is not used in the substitution model but plays a very important role
in the environment model. The omitted bindrec case will be explained later.

14

type var = string

type pgm = Pgm of var list * exp (* param names, body *)

and exp =

Lit of valu (* integer, boolean, character, string, and list literals *)

| Var of var (* variable reference *)

| PrimApp of primop * exp list (* primitive application with rator, rands *)

| If of exp * exp * exp (* conditional with test, then, else *)

| Abs of var * exp (* function abstraction *)

| App of exp * exp (* function application *)

| Bindrec of var list * exp list * exp (* recursive bindings *)

and valu =

Int of int

| Bool of bool

| Char of char

| String of string

| Symbol of string

| List of valu list

| Fun of var * exp * valu Env.env (* formal, body, and environment *)

and primop = Primop of var * (valu list -> valu)

let primopName (Primop(name,_)) = name

let primopFunction (Primop(_,fcn)) = fcn

(* val subst : exp -> exp Env.env -> exp *)

let rec subst exp env =

match exp with

Lit i -> exp

| Var v -> (match Env.lookup v env with Some e -> e | None -> exp)

| PrimApp(op,rands) -> PrimApp(op, map (flip subst env) rands)

| If(tst,thn,els) -> If(subst tst env, subst thn env, subst els env)

| Abs(fml,body) ->

let fml’ = fresh fml in Abs(fml’, subst (rename1 fml fml’ body) env)

| App(rator,rand) -> App(subst rator env, subst rand env)

| Bindrec(names,defns,body) ->

let names’ = map fresh names in

Bindrec(names’, map (flip subst env) (map (renameAll names names’) defns),

subst (renameAll names names’ body) env)

(* val subst1 : exp -> var -> exp -> exp *)

and subst1 newexp name exp = subst exp (Env.make [name] [newexp])

(* val substAll: exp list -> var list -> exp -> exp *)

and substAll newexps names exp = subst exp (Env.make names newexps)

(* val rename1 : var -> var -> exp -> exp *)

and rename1 oldname newname exp = subst1 (Var newname) oldname exp

(* val renameAll : var list -> var list -> exp -> exp *)

and renameAll olds news exp = substAll (map (fun s -> Var s) news) olds exp

Figure 8: Ocaml data types for the abstract syntax of Hofl.

15

(* val run : Hofl.pgm -> int list -> int *)

let rec run (Pgm(fmls,body)) ints =

let flen = length fmls

and ilen = length ints

in

if flen = ilen then

eval (substAll (map (fun i -> Lit (Int i)) ints) fmls body)

else

raise (EvalError ("Program expected " ^ (string_of_int flen)

^ " arguments but got " ^ (string_of_int ilen)))

(* val eval : Hofl.exp -> valu *)

and eval exp =

match exp with

Lit v -> v

| Var name -> raise (EvalError("Unbound variable: " ^ name))

| PrimApp(op, rands) -> (primopFunction op) (map eval rands)

| If(tst,thn,els) ->

(match eval tst with

Bool true -> eval thn

| Bool false -> eval els

| v -> raise (EvalError ("Non-boolean test value "

^ (valuToString v)

^ " in if expression"))

)

| Abs(fml,body) -> Fun(fml,body,Env.empty) (* No env needed in subst. model *)

| App(rator,rand) -> apply (eval rator) (eval rand)

| Bindrec(names,defns,body) -> . . . see discussion of bindrec . . .

and apply fcn arg =

match fcn with

Fun(fml,body,_) -> eval (subst1 (Lit arg) fml body)

(* Lit converts any argument valu (including lists & functions)

into a literal for purposes of substitution *)

| _ -> raise (EvalError ("Non-function rator in application: "

^ (valuToString fcn)))

Figure 9: Substitution model evaluator in Hofl.

16

3.3 Environment Model

We would like to be able to explain static scoping within the environment model of evaluation.
Most evaluation rules of the environment model are independent of the scoping mechanism. Such
rules are shown in Fig. 10.

Program Running Rule

• To run a Hofl program (hofl (I1 . . . In) Ebody) on integers i1, . . . , ik, return the result of eval-
uating Ebody in an environment that binds the formal parameter names I1 . . .In respectively to the
integer values i1, . . . , ik.

Expression Evaluation Rules

• To evaluate a literal expression in any environment, return the value of the literal.

• To evaluate a variable reference expression I expression in environment ENV , return the value of
looking up I in ENV . If I is not bound in ENV , signal an unbound variable error.

• To evaluate the conditional expression (if E1 E2 E3) in environment ENV , we first evaluated
E1 in ENV . If the result is true, we return the result of evaluating E2 in ENV ; else we return the
result of evaluating E3 in ENV .

• To evaluate the primitive application (Orator E1 ... En) in environment ENV , we must first
evaluate the operand expressions E1 through En in ENV . We then return the result of applying the
primitive operator primop to the resulting operand values.

• To evaluate the function application (E0 E1 ... En) in environment ENV , we must first evaluate
the expressions E0 through En in ENV . We then return the result of applying the function value
to the operand values. (The details of what it means to apply a function is at the heart of scoping
and, as we shall see, differs among scoping mechanisms.)

Although bind, bindrec, and bindseq can all be “desugared away”, it is convenient to imagine that there
are rules for evaluating these constructs directly:

• Evaluating (bind Ename Edefn Ebody) in environment ENV is the result of evaluating Ebody in the
environment that results from extending ENV with a frame containing a single binding between
Ename and the result of evaluating Edefn in ENV .

• A bindpar is evaluated similarly to bind, except that the new frame contains one binding for each
of the name/defn pairs in the bindpar. As in bind, all defns of bindpar are evaluated in the original
frame, not the extension.

• A bindseq expression should be evaluated as if it were a sequence of nested binds.

Figure 10: Environment model evaluation rules that are independent of the scoping mechanism.

It turns out that any scoping mechanism is determined by how the following two questions are
answered within the environment model:

1. What is the result of evaluating an abstraction in an environment?

2. When creating a frame to model the application of a function to arguments, what should the
parent frame of the new frame be?

In the case of static scoping, answering these questions yields the following rules:

17

1. Evaluating an abstraction ABS in an environment ENV returns a closure that pairs together
ABS and ENV . The closure “remembers” that ENV is the environment in which the free
variables of ABS should be looked up; it is like an “umbilical cord” that connects the ab-
straction to its place of birth. We shall draw closures as a pair of circles, where the left circle
points to the abstraction and the right circle points to the environment:

ABST

ENV

2. To apply a closure to arguments, create a new frame that contains the formal parameters

of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment remembered by the closure. That is, the new frame should
extend the environment where the closure was born, not (necessarily) the environment in
which the closure was called. This creates the right environment for evaluating the body of
the abstraction as implied by static scoping: the first frame in the environment contains the
bindings for the formal parameters, and the rest of the frames contain the bindings for the
free variables.

We will show these rules in the context of using the environment model to explain executions
of the two programs from above. First, consider running the add-a program on the input 3. This
evaluates the body of the add-a program in an environment ENV 0 binding a to 3:

a

3

ENV0

To evaluate the (bind add-a . . .) expression, we first evaluate (fun (x) (+ x a)) in ENV 0.
According to rule 1 from above, this should yield a closure pairing the abstraction with ENV 0. A
new frame ENV 2 should then be created binding add-a to the closure:

a

3

ENV0

add-a

 (fun (x) (+ x a))

ENV2

Next the expression (bind a ...) is evaluated in ENV 2. First the definition (+ a 10) is
evaluated in ENV 1, yielding 13. Then a new frame ENV 3 is created that binds a to 13:

a

3

ENV0

add-a

(fun (x) (+ x a))

ENV2

a

13

ENV3

18

Finally the function application (add-a (* 2 a)) is evaluated in ENV 3. First, the subexpres-
sions add-a and (* 2 a) must be evaluated in ENV 3; these evaluations yield the add-a closure
and 26, respectively. Next, the closure is applied to 26. This creates a new frame ENV 1 binding
x to 26; by rule 2 from above, the parent of this frame is ENV 0, the environment of closure; the
environment ENV 3 of the function application is simply not involved in this decision.

a

3

ENV0

add-a

(fun (x) (+ x a))

ENV2

a

13

ENV3

x

26

ENV1

As the final step, the abstraction body (+ x a) is evaluated in ENV 1. Since x evaluates to 26
in ENV 3 and a evaluates to 3, the final answer is 29.
As a second example of static scoping in the environment model, consider running the create-sub

program from the previous section on the input 12. Below is an environment diagram showing all
environments created during the evaluation of this program. You should study this diagram care-
fully and understand why the parent pointer of each environment frame is the way it is. The final
answer of the program (which is not shown in the environment model itself) is 4.

n

12

ENV0

ENV3

ENV4

n

create-sub

sub2

sub3

2

n

3

(fun (n)

 (fun (x)

 (- x n)))

(fun (x) (- x n))

ENV1b

ENV1a

ENV6

test

(abs (n) (sub2 (sub3 (- n 1))))

x

13

ENV2a

n

10

x

9

ENV2b

x

ENV2c

6

ENV5

In both of the above environment diagrams, the environment names have been chosen to un-
derscore a critical fact that relates the environment diagrams to the contour diagrams. Whenever
environment frame ENV i has a parent pointer to environment frame ENV j in the environment

19

model, the corresponding contour C i is nested directly inside of C j within the contour model. For
example, the environment chain ENV 6 → ENV 4 → ENV 3 → ENV 0 models the contour nesting
C6 → C4 → C3 → C0, and the environment chains ENV 2c → ENV 1a → ENV 0, ENV 2a → ENV 1b

→ ENV 0, and ENV 2b → ENV 1b → ENV 0 model the contour nesting C2 →C1 →C0.
These correspondences are not coincidental, but by design. Since static scoping is defined by

the contour diagrams, the environment model must somehow encode the nesting of contours. The
environment component of closures is the mechanism by which this correspondence is achieved.
The environment component of a closure is guaranteed to point to an environment ENV birth that
models the contour enclosing the abstraction of the closure. When the closure is applied, the newly
constructed frame extends ENV birth with a new frame that introduces bindings for the parameters
of the abstraction. These are exactly the bindings implied by the contour of the abstraction. Any
expression in the body of the abstraction is then evaluated relative to the extended environment.

3.4 Interpreter Implementation of Environment Model

Rules 1 and 2 of the previous section are easy to implement in an environment model interpreter.
The implementation is shown in Figure 11. Note that it is not necessary to pass env as an argument
to funapply, because static scoping dictates that the call-time environment plays no role in applying
the function.

(* val eval : Hofl.exp -> valu Env.env -> valu *)

and eval exp env =

match exp with
...

| Abs(fml,body) -> Fun(fml,body,env) (* make a closure *)

| App(rator,rand) -> apply (eval rator env) (eval rand env)
...

and apply fcn arg =

match fcn with

Fun(fml,body,senv) -> eval body (Env.bind fml arg senv) (* extend static env *)

| _ -> raise (EvalError ("Non-function rator in application: " ^ (valuToString fcn)))

Figure 11: Essence of static scoping in Hofl.

4 Dynamic Scoping

4.1 Environment Model

In dynamic scoping, environments follow the shape of the invocation tree for executing the program.
Recall that an invocation tree has one node for every function invocation in the program, and that
each node has as its children the nodes for function invocations made directly within in its body,
ordered from left to right by the time of invocation (earlier invocations to the left). Since bind
desugars into a function application, we will assume that the invocation tree contains nodes for
bind expressions as well. We will also consider the execution of the top-level program to be a kind
of function application, and its corresponding node will be the root of the invocation tree. For
example, here is the invocation tree for the add-a program:

20

 run (hofl (a) ...)

 bind add-a

invoke add-a

bind a

As a second example, here is the invocation tree for the create-sub program:

 run (hofl (n) ...)

 bind create-sub

invoke create-sub 2

invoke create-sub 3

bindpar sub2,sub3

 bind test

invoke sub3

invoke test

invoke sub3

invoke sub2

Note: in some cases (but not the above two), the shape of the invocation tree may depend on

the values of the arguments at certain nodes, which in turn depends on the scoping mechanism.
So the invocation tree cannot in general be drawn without fleshing out the details of the scoping
mechanism.
The key rules for dynamic scoping are as follows:

1. Evaluating an abstraction ABS in an environment ENV just returns ABS . In dynamic
scoping, there there is no need to pair the abstraction with its environment of creation.

2. To apply a closure to arguments, create a new frame that contains the formal parameters of
the abstraction of the closure bound to the argument values. The parent of this new frame
should be the environment in which the function application is being evaluated - that is, the
environment of the invocation (call), not the environment of creation. This means that the
free variables in the abstraction body will be looked up in the environment where the function
is called.

Consider the environment model showing the execution of the add-a program on the argument 3
in a dynamically scoped version of Hofl. According to the above rules, the following environments
are created:

21

a

3

ENV0

add-a

(fun (x) (+ x a))

ENV1

a

13

ENV2

x

26

ENV3

 run (hofl (a) ...)

bind add-a

invoke add-a

bind a

The key differences from the statically scoped evaluation are (1) the name add-a is bound to
an abstraction, not a closure and (2) the parent frame of ENV 3 is ENV 2, not ENV 0. This means
that the evaluation of (+ x a) in ENV 3 will yield 39 under dynamic scoping, as compared to 29
under static scoping.
Figure 12 shows an environment diagram showing the environments created when the create-sub

program is run on the input 12. The top of the figure also includes a copy of the invocation tree to
emphasize that in dynamic scope the tree of environment frames has exactly the same shape as the
invocation tree. You should study the environment diagram and justify the target of each parent
pointer. Under dynamic scoping, the first invocation of sub3 (on 13) yields 1 because the n used
in the subtraction is the program parameter n (which is 12) rather than the 3 used as an argument
to create-sub when creating sub3. The second invocation of sub3 (on 0) yields -1 because the n
found this time is the argument 1 to test. The invocation of sub2 (on -1) finds that n is this same
1, and returns -2 as the final result of the program.

4.2 Interpreter Implementation

The two rules of the dynamic scoping mechanism are easy to encode in the environment model.
The implementation is shown in Figure 11. For the first rules, the evaluation of an abstraction
just returns the abstraction. For the second rules, the application of a function passes the call-time
environment to funapply-dynamic, where it is used as the parent of the environment frame created
for the application.

5 Recursive Bindings

5.1 The bindrec Construct

Hofl’s bindrec construct allows creating mutually recursive structures. For example, here is the
classic even?/odd? mutual recursion example expressed in Hofl:

22

 run (hofl (n) ...)

 bind create-sub

invoke create-sub 2

invoke create-sub 3

bindpar sub2,sub3

 bind test

invoke sub3

invoke test

invoke sub3

invoke sub2

n

12

ENV0

ENV3

ENV4

n

create-sub

sub2

sub3

2

n

3

(fun (n)(abs (x)(- x n)))

(fun (x) (- x n))

ENV1b

ENV1a

test

(fun (n) (sub2 (sub3 (- n 1))))

x

13

ENV2a

n

1

 x

-1

ENV2c

x

ENV2b

0

ENV5

ENV6

Figure 12: Invocation tree and environment diagram for the create-sub program run on 12.

23

(* val eval : Hofl.exp -> valu Env.env -> valu *)

and eval exp env =

match exp with
...

| Abs(fml,body) -> Fun(fml,body,env) (* make a closure *)

| App(rator,rand) -> apply (eval rator env) (eval rand env) env
...

and apply fcn arg denv =

match fcn with

Fun(fml,body,senv) -> eval body (Env.bind fml arg denv) (* extend dynamic env *)

| _ -> raise (EvalError ("Non-function rator in application: " ^ (valuToString fcn)))

Figure 13: Essence of dynamic scoping in Hofl.

(hofl (n)

(bindrec ((even? (abs (x)

(if (= x 0)

#t

(odd? (- x 1)))))

(odd? (abs (y)

(if (= y 0)

#f

(even? (- y 1))))))

(prep (even? n)

(prep (odd? n)

#e))))

The scope of the names bound by bindrec (even? and odd? in this case) includes not only the
body of the bindrec expression, but also the definition expressions bound to the names. This
distinguishes bindrec from bindpar, where the scope of the names would include the body, but
not the definitions. The difference between the scoping of bindrec and bindpar can be seen in
the two contour diagrams in Fig. ??. In the bindrec expresion, the reference occurrence of odd?
within the even? abstraction has the binding name odd? as its binding occurrence; the case is
similar for even?. However, when bindrec is changed to bindpar in this program, the names odd?
and even? within the definitions become unbound variables. If bindrec were changed to bindseq,
the occurrence of even? in the second binding would reference the declaration of even? in the first,
but the occurrence of odd? in the first binding would still be unbound.

5.2 Environment Model Evaluation of bindrec

5.2.1 High-level Model

How is bindrec handled in the environment model? We do it in three stages:

1. Create an empty environment frame that will contain the recursive bindings, and set its
parent pointer to be the environment in which the bindrec expression is evaluated.

2. Evaluate each of the definition expressions with respect to the empty environment. If eval-
uating any of the definition expressions requires the value of one of the recursively bound

24

(hofl (n)

 (bindrec ((even? (fun (x)

 (if (= x 0)

 #t

 (odd? (- x 1)))))

 (odd? (fun (y)

 (if (= y 0)

 #f

 (even? (- y 1)))))

)

 (prep (even? n)

 (prep (odd? n)

 #e)))

)

C0

C1

C2

C3

(hofl (n)

 (bindpar ((even? (fun (x)

 (if (= x 0)

 #t

 (odd? (- x 1)))))

 (odd? (fun (y)

 (if (= y 0)

 #f

 (even? (- y 1)))))

)

 (prep (even? n)

 (prep (odd? n)

 #e)))

)

C0

C1

C2

C3

Figure 14: Lexical contours for versions of the even?/odd? program using bindrec and bindpar.

25

variables, the evaluation process is said to encounter a black hole and the bindrec is con-
sidered ill-defined.

3. Populate the new frame with bindings between the binding names and the values computed
in step 2. Adding the bindings effectively “ties the knot” of recursion by making cycles in
the graph structure of the environment diagram.

The result of this process for the even?/odd? example is shown below, where it is assumed
that the program is called on the argument 5. The body of the program would be evaluated
in environment ENV 1 constructed by the bindrec expression. Since the environment frames for
containing x and y would all have ENV 1 as their parent pointer, the references to odd? and even?
in these environments would be well-defined.

n

5

even?

odd?

(fun (x) ... odd? ...)

(fun (y) ... even? ...)

ENV0

ENV1

In order for bindrec to be meaningful, the definition expressions cannot require immediate
evaluation of the bindrec-bound variables (else a black hole would be encountered). For example,
the following bindrec example clearly doesn’t work because in the process of determining the value
of x, the value x is required before it has been determined:

(bindrec ((x (+ x 1)))

(* x 2))

In contrast, in the even?/odd? example we are not asking for the values of even? and odd? in
the process of evaluating the definitions. Rather the definitions are abstractions that will refer to
even? and odd? at a later time, when they are invoked. Abstractions serve as a sort of delaying
mechanism that make the recursive bindings sensible.
As a more subtle example of a meaningless bindrec, consider the following:

(bindrec ((a (prep 1 b))

(b (prep 2 a)))

b)

Unlike the above case, here we can imagine that the definition might mean something sensible.
Indeed in so-called call-by-need (a.k.a lazy) languages (such as Haskell), the above definitions are
very sensible, and stand for the following list structure:

26

a

b

1

2

However, call-by-value (a.k.a. strict or eager) languages (such as Hofl, Ocaml, Scheme, Java,
C, etc.) require that all definitions be completely evaluated to values before they can be bound
to a name or inserted in a data structure. In this class of languages, the attempt to evaluate
(preps 1 b) fails because the value of b cannot be determined.
Nevertheless, by using the delaying power of abstractions, we can get something close to the

above cyclic structure in Hofl. In the following program, the references to the recursive bindings
one-two and two-one are “protected” within abstractions of zero variables (which are known as
thunks). Any attempt to use the delayed variables requires applying the thunks to zero arguments
(as in the expression ((snd stream)) within the prefix function).

(hofl (n)

(bindpar ((pair (fun (a b) (list a b)))

(fst (fun (pair) (head pair)))

(snd (fun (pair) (head (tail pair)))))

(bindrec ((one-two (pair 1 (fun () two-one)))

(two-one (pair 2 (fun () one-two)))

(prefix (fun (num stream)

(if (= num 0)

(empty)

(prep (fst stream)

(prefix (- num 1)

((snd stream))))))))

(prefix n one-two))))

When the above program is applied to the input 5, the result is (list 1 2 1 2 1).

5.2.2 Implementing bindrec

Implementing the “knot-tying” aspect of the recursive bindings of bindrec within the eval function
of the statically scoped Hofl interpreter proves to be rather tricky. We will consider a sequence
of incorrect definitions for the bindrec clause on the path to developing some correct ones.
Here is a first attempt:

(* Broken Attempt 1 *)

| Bindrec(names,defns,body) ->

eval body

(Env.bindAll names

(map (fun defn -> eval defn ???)

defns)

env)

There is a problem here: what should the environment ??? be? It shouldn’t be env but the new
environment that results from extending env with the recursive bindings. But the new environment
has no name in the above clause.
A second attempt uses Ocaml’s let to name the result of Env.bindAll:

27

(* Broken Attempt 2 *)

| Bindrec(names,defns,body) ->

eval body

let newEnv = Env.bindAll names

(map (fun defn -> eval defn newEnv)

defns)

env

in newEnv

This attempt fails because, by the scoping rules of let, newEnv is an unbound variable in Env.bindAll
A third attempt replaces let with let rec:

(* Broken Attempt 3 *)

| Bindrec(names,defns,body) ->

eval body

let rec newEnv =

Env.bindAll names

(map (fun defn -> eval defn newEnv)

defns)

env

in newEnv

The above clause attempts to use the knot-tying ability ofOcaml’s own recursive binding construct,
let rec, to implementHofl’s recursive binding construct. Now the newEnvwithin Env.bindAll . . .

is indeed correctly scoped. Unfortunately, there are still two problems:

1. The Ocaml let rec construct can only be used to define recursive functions. It cannot be
used to define more general recursive values (such as the one-two example above).

2. Even if Ocaml did allow more general recursive values to be defined via let rec, because
Ocaml is a call-by-value language, we would still come face to face with the same sort of
problem encountered in the recursive list example from above. That is, the eval within the
functional argument to map requires that all its arguments be evaluated to values before it is
invoked. But its newEnv argument is defined to be the result of a computation that depends
on the result returned by invocations of this occurrence of eval. This leads to an irresolvable
set of constraints: eval must return before it can be invoked!

We can fix the problem in the same way we fixed the recursive list problem: by using thunks
to delay evaluation of the recursive bound variable. In particular, rather than storing the result of
evaluating the definition in the environment, we can store in the environment a thunk for evaluating
the definition:

(* Complex (but working) Attempt 4 *)

| Bindrec(names,defns,body) ->

eval body

let rec newEnv =

Env.bindAll names

(map (fun defn -> (fun () -> eval defn newEnv))

defns)

env

in newEnv

Once we do this, we must ensure (1) that all entities stored in the environments used by eval are
thunks and (2) that whenever a thunk is looked up in the environment, it should be “dethunked”

28

- i.e., applied to zero arguments to retrieve its value. This makes sense if you think in terms of
types. Point (1) says that the type of environments is effectively changed from var -> valu to
var -> unit -> value, where unit is the type of (). Point (2) says that since the result of an
environment lookup is now a function of type unit -> valu, it must be applied to zero arguments
in order to get a value.
Although the above approach “works”, it is less elegant and less efficient than we’d like it to

be. A solution that is both more elegant and more efficient is possible if we adopt the environment
signature and implementation in Fig. ??. This supports operations for binding both regular values
(bind and bindAll) as well as thunked values (bindThunk and bindAllThunks) in such a way that
the regular values may be looked up efficiently without any dethunking. Furthermore, it supports
a abstract fixed point operator, fix, that internally uses Ocaml’s let rec construct to find the
fixed point. This is possible because the implementation uses functions to represent environments,
and let rec can be used to define recursive functions.
Using the extended environment module, we can implement bindrec as follows:

(* Final Version *)

| Bindrec(names,defns,body) ->

eval body

(Env.fix (fun e ->

(Env.bindAllThunks names

(map (fun defn ->

(fun () -> eval defn e))

defns)

env)))

5.3 Fixed Points and the Y Operator

With all the complexity surrounding the implementation of bindrec in Hofl, it may be surprising
that it is possible to define recursive functions in Hofl without bindrec! While bindrec is
convenient for defining such functions, it is not necessary.

29

module type ENV = sig

type ’a env

val empty: ’a env

val bind : string -> ’a -> ’a env -> ’a env

val bindAll : string list -> ’a list -> ’a env -> ’a env

val make : string list -> ’a list -> ’a env

val lookup : string -> ’a env -> ’a option

val bindThunk : string -> (unit -> ’a) -> ’a env -> ’a env

val bindAllThunks : string list -> (unit -> ’a) list -> ’a env -> ’a env

val merge : ’a env -> ’a env -> ’a env

val fix : (’a env -> ’a env) -> ’a env

(* for testing *)

val fromFun : (string -> ’a option) -> ’a env

val toFun : ’a env -> (string -> ’a option)

end

module Env : ENV = struct

type ’a env = string -> ’a option

let empty = fun s -> None

let bind name valu env =

fun s -> if s = name then Some valu else env s

let bindAll names vals env = ListUtils.foldr2 bind env names vals

let make names vals = bindAll names vals empty

let lookup name env = env name

let bindThunk name valuThunk env =

fun s -> if s = name then Some (valuThunk ()) else env s

let bindAllThunks names valThunks env =

ListUtils.foldr2 bindThunk env names valThunks

let merge env1 env2 =

fun s -> (match env1 s with

None -> env2 s

| some -> some)

let fix gen = let rec envfix s = (gen envfix) s in envfix

let fromFun f = f

let toFun f = f

end

Figure 15: An environment signature and an function-based implementation of this signature.

30

(def y (fun (g)

((fun (s) (fun (x) ((g (s s)) x)))

(fun (s) (fun (x) ((g (s s)) x))))))

(def fact-gen (fun (f)

(fun (n)

(if (= n 0)

1

(* n (f (- n 1)))))))

(def fact (y fact-gen))

(def church-pair (fun (x y) (fun (f) (f x y))))

(def church-fst (fun (p) (p (fun (x y) x))))

(def church-snd (fun (p) (p (fun (x y) y))))

(def even-odd-gen (fun (p)

(church-pair

(fun (x) ; even?

(if (= x 0)

#t

((church-snd p) (- x 1))))

(fun (y) ; odd?

(if (= y 0)

#f

((church-fst p) (- y 1)))))))

(def even? (church-fst (y even-odd-gen)))

(def odd? (church-snd (y even-odd-gen)))

31

