
Introduction to the Objective Caml Programming Language

Jason Hickey

January 31, 2005

2

Contents

1 Introduction 7
1.1 Functional and imperative languages . 8
1.2 Organization . 9
1.3 Additional Sources of Information . 9

2 Simple Expressions 11
2.1 Comment convention . 11
2.2 Basic expressions . 11

2.2.1 unit: the singleton type . 12
2.2.2 int: the integers . 12
2.2.3 float: the floating-point numbers . 13
2.2.4 char: the characters . 13
2.2.5 string: character strings . 14
2.2.6 bool: the Boolean values . 15

2.3 Operator precedences . 16
2.4 The OCaml type system . 17
2.5 Compiling your code . 18

3 Variables and Functions 19
3.1 Functions . 20

3.1.1 Scoping and nested functions . 22
3.1.2 Recursive functions . 22
3.1.3 Higher order functions . 23

3.2 Variable names . 24

4 Basic Pattern Matching 27
4.1 Functions with matching . 29
4.2 Values of other types . 29
4.3 Incomplete matches . 30
4.4 Patterns are everywhere . 32

5 Tuples, Lists, and Polymorphism 33
5.1 Polymorphism . 33

5.1.1 Value restriction . 34

3

4 CONTENTS

5.1.2 Other kinds of polymorphism . 35
5.2 Tuples . 36
5.3 Lists . 38

6 Unions 41
6.1 Binary trees . 43
6.2 Unbalanced binary trees . 44
6.3 Unbalanced, ordered, binary trees . 44
6.4 Revisiting pattern matching . 45
6.5 Balanced red-black trees . 47
6.6 Open union types . 49
6.7 Some common built-in unions . 50

7 Exceptions 51

8 Records, Arrays, and Side-Effects 55
8.1 Records . 55

8.1.1 Imperative record updates . 56
8.1.2 Field label namespace . 57

8.2 References . 58
8.2.1 Value restriction . 59

8.3 Arrays and strings . 60
8.4 Sequential execution and looping . 61

8.4.1 while loops . 61
8.4.2 for loop . 62

9 Input and Output 63
9.1 File opening and closing . 63
9.2 Writing and reading values on a channel . 64
9.3 Channel manipulation . 65
9.4 Printf . 66
9.5 String buffers . 67

10 Files, Compilation Units, and Programs 69
10.1 Signatures . 69

10.1.1 Type declarations . 70
10.1.2 Method declarations . 71

10.2 Implementations . 71
10.2.1 Type definitions . 71
10.2.2 Method definitions . 72

10.3 Building a program . 73
10.4 Compiling the program . 74

10.4.1 Where is the main function? . 74
10.4.2 Some common errors . 75

10.5 Using open to expose a namespace . 76
10.5.1 A note about open . 77

CONTENTS 5

10.6 Debugging a program . 78

11 The OCaml Module System 83
11.1 Module signatures . 83
11.2 Module structures . 85

11.2.1 Assigning a signature . 86
11.3 Functors . 87

11.3.1 Using a functor . 90
11.3.2 Sharing constraints . 91
11.3.3 An implementation that works . 91

12 The OCaml Object System 93
12.1 The basic object system . 93

12.1.1 Class types . 93
12.1.2 Class expressions . 94
12.1.3 Objects . 95
12.1.4 Parameterized class expressions . 96

12.2 Polymorphism . 97
12.3 Inheritance . 98

12.3.1 Multiple inheritance . 99
12.3.2 Virtual methods . 102
12.3.3 Subclassing . 104
12.3.4 Superclassing, or typecase . 104

12.4 Functional objects . 108

6 CONTENTS

Chapter 1

Introduction

This document is an introduction to ML programming, specifically for the Objective Caml
(OCaml) programming language from INRIA [3, 5]. OCaml is a dialect of the ML (Meta-Language)
family of languages, which derive from the Classic ML language designed by Robin Milner in 1975
for the LCF (Logic of Computable Functions) theorem prover [2].

OCaml shares many features with other dialects of ML, and it provides several new features of
its own. Throughout this document, we use the term ML to stand for any of the dialects of ML,
and OCaml when a feature is specific to OCaml.

• ML is a functional language, meaning that functions are treated as first-class values. Func-
tions may be nested, functions may be passed as arguments to other functions, and functions
can be stored in data structures. Functions are treated like their mathematical counterparts
as much as possible. Assignment statements that permanently change the value of certain
expressions are permitted, but used much less frequently than in languages like C or Java.

• ML is strongly typed, meaning that the type of every variable and every expression in a
program is determined at compile-time. Programs that pass the type checker are safe: they
will never “go wrong” because of an illegal instruction or memory fault.

• Related to strong typing, ML uses type inference to infer types for the expressions in a
program. Even though the language is strongly typed, it is rare that the programmer has to
annotate a program with type constraints.

• The ML type system is polymorphic, meaning that it is possible to write programs that
work for values of any type. For example, it is straightforward to define data structures like
lists, stacks, and trees that can contain elements of any type. In a language like C or Java,
the programmer would either have to write different implementations for each type (say, lists
of integers vs. lists of floating-point values), or else use explicit coercions to bypass the type
system.

• ML implements a pattern matching mechanism that unifies case analysis and data destruc-
tors.

7

8 CHAPTER 1. INTRODUCTION

/*
* A C function to
* determine the greatest
* common divisor of two
* positive numbers a and b.
* We assume a>b.
*/

int gcd(int a, int b)
{

int r;

while((r = a % b) != 0) {
a = b;
b = r;

}
return b;

}

(*
* An OCaml function to
* determine the greatest
* common divisor of two
* positive numbers a and b.
* We assume a>b.
*)
let rec gcd a b =

let r = a mod b in
if r = 0 then

b
else

gcd b r

Figure 1.1: C is an imperative programming language, while OCaml is functional. The code on the
left is a C program to compute the greatest common divisor of two natural numbers. The code on
the right is equivalent OCaml code, written functionally.

• ML includes an expressive module system that allows data structures to be specified and
defined abstractly. The module system includes functors, which are are functions over modules
that can be used to produce one data structure from another.

• OCaml is also the only widely-available ML implementation to include an object system.
The module system and object system complement one another: the module system provides
data abstraction, and the object system provides inheritance and re-use.

• OCaml includes a compiler that supports separate compilation. This makes the develop-
ment process easier by reducing the amount of code that must be recompiled when a program is
modified. OCaml actually includes two compilers: a byte-code compiler that produces code for
the portable OCaml byte-code interpreter, and a native-code compiler that produces efficient
code for many machine architectures.

• One other feature should be mentioned: all the languages in the ML family have a formal
semantics, which means that programs have a mathematical interpretation, making the pro-
gramming language easier to understand and explain.

1.1 Functional and imperative languages

The ML languages are semi-functional, which means that the normal programming style is func-
tional, but the language includes assignment and side-effects.

1.2. ORGANIZATION 9

To compare ML with an imperative language, a comparison of two simple implementations of
Euclid’s algorithm is shown in Figure 1.1.

In a language like C, the algorithm is normally implemented as a loop, and progress is made
by modifying the state. Reasoning about this program requires that we reason about the program
state: give an invariant for the loop, and show that the state makes progress on each step toward
the goal.

In OCaml, Euclid’s algorithm is normally implemented using recursion. The steps are the same,
but there are no side-effects. The let keyword specifies a definition, the rec keyword specifies that
the definition is recursive, and the gcd a b defines a function with two arguments a and b.

In ML, programs rarely use assignment or side-effects except for I/O. Functional programs have
some nice properties: one is that data structures are persistent (by definition), which means that no
data structure is ever destroyed.

There are problems with taking too strong a stance in favor of functional programming. One is
that every updatable data structure has to be passed as an argument to every function that uses it
(this is called threading the state). This can make the code obscure if there are too many of these
data structures. We take a moderate approach. We use imperative code when necessary, but its use
is discouraged.

1.2 Organization

This document is organized as a user guide to programming in OCaml. It is not a reference manual:
there is already an online reference manual. I assume that the reader already has some experience
using an imperative programming language like C; I’ll point out the differences between ML and C
in the cases that seem appropriate.

1.3 Additional Sources of Information

This document was originally used for a course in compiler construction at Caltech. The course
material, including exercises, is available at http://www.cs.caltech.edu/courses/cs134/cs134b.

The OCaml reference manual [3] is available on the OCaml home page http://www.ocaml.org/.
The author can be reached at jyh@cs.caltech.edu.

http://www.cs.caltech.edu/courses/cs134/cs134b�
http://www.ocaml.org/�

10 CHAPTER 1. INTRODUCTION

Chapter 2

Simple Expressions

Many functional programming implementations include a significant runtime environment that
defines a standard library and a garbage collector. They also often include a toploop evaluator that
can be used to interact with the system. OCaml provides a compiler, a runtime, and a toploop. By
default, the toploop is called ocaml. The toploop prints a prompt (#), reads an input expression,
evaluates it, and prints the result . Expressions in the toploop are terminated by a double-semicolon
‘;;’.

% ocaml
Objective Caml version 3.08.0

1 + 4;;
- : int = 5
#

The toploop prints the type of the result (in this case, int) and the value (5). To exit the toploop,
you may type the end-of-file character (usually Control-D in Unix, and Control-Z in Microsoft
Windows).

2.1 Comment convention

In OCaml, comments are enclosed in matching (* and *) pairs. Comments may be nested, and the
comment is treated as white space.

2.2 Basic expressions

OCaml is a strongly typed language. In OCaml every valid expression must have a type, and
expressions of one type may not be used as expressions in another type. Apart from polymorphism,
which we discuss in Chapter 5.1, there are no implicit coercions. Normally, you do not have to
specify the types of expressions. OCaml uses type inference [1] to figure out the types for you.

The primitive types are unit, int, char, float, bool, and string.

11

12 CHAPTER 2. SIMPLE EXPRESSIONS

2.2.1 unit: the singleton type

The simplest type in OCaml is the unit type, which contains one element: (). This type seems
to be a rather silly. However, in a functional language every function must return a value; () is
commonly used as the value of a procedure that computes by side-effect. It corresponds to the void
type in C.

2.2.2 int: the integers

The int type is the type of signed integers: . . . ,−2,−1, 0, 1, 2, . . . The precision is finite. Integer
values are represented by a machine word, minus one bit that is reserved for use by the garbage
collector, so on a 32-bit machine architecture, the precision is 31 bits (one bit is reserved for use by
the runtime), and on a 64-bit architecture, the precision is 63 bits.

Integers are usually specified in decimal, but there are several alternate forms. In the following
table the symbol d denotes a decimal digit (‘0’..‘9’); o denotes an octal digit (‘0’..‘7’); b denotes a
binary digit (‘0’ or ‘1’); and h denotes a hexadecimal digit (‘0’..‘9’, or ‘a’..‘f’, or ‘A’..‘F’).

ddd . . . an int specified in decimal.
0oooo . . . an int specified in octal.
0bbbb . . . an int specified in binary.
0xhhh . . . an int specified in hexadecimal.

There are the usual operations on ints, including arithmetic and bitwise operations.

-i or ~-i negation.
i + j addition.
i - j subtraction.
i * j multiplication.
i / j division.
i mod j remainder.
lnot i bitwise-inverse.
i lsl j logical shift left i · 2j .
i lsr j logical shift right i÷ 2j (i is treated as an unsigned twos-complement number).
i asl j arithmetic shift left i · 2j .
i asr j arithmetic shift right bi÷ 2jc (the sign of i is preserved).
i land j bitwise-and.
i lor j bitwise-or.
i lxor j bitwise exclusive-or.

The precedences of the integer operators are as follows, listed in increasing order.

Operators Associativity
+, - left
*, /, mod, land, lor, lxor left
lsl, lsr, asr right
lnot left
~-, - right

2.2. BASIC EXPRESSIONS 13

0b1100;;
- : int = 12
3 + 4 * 5;;
- : int = 23
0x100 lsl (2 + 6);;
- : int = 65536

2.2.3 float: the floating-point numbers

The floating-point numbers provide dynamically scaled “floating point” numbers. The syntax of a
floating point includes either a decimal point, or an exponent (base 10) denoted by an ‘E’ or ‘e’. A
digit is required before the decimal point. Here are a few examples:

0.2, 2e7, 3.1415926, 31.415926E-1

The integer arithmetic operators (+, -, *, /, . . .) do not work with floating point values. The
corresponding operators include a ‘.’ as follows:

-.x or ~-.x floating-point negation
x +. y floating-point addition.
x -. y floating-point subtraction.
x *. y float-point multiplication.
x /. y floating-point division.
int of float x float to int conversion.
float of int i int to float conversion.

31.415926e-1;;
- : float = 3.1415926
float_of_int 1;;
- : float = 1.
int_of_float 1.2;;
- : int = 1
3.1415926 *. 17.2;;
- : float = 54.03539272
1 + 2.0;;
Characters 4-7:

1 + 2.0;;
^^^

This expression has type float but is here used with type int

The final expression fails to typecheck because the int operator + is used with the floating-point
value 2.0.

2.2.4 char: the characters

The character type char specifies characters from the ASCII character set. The syntax for a character
constants uses the single quote symbol ’c’.

’a’, ’Z’, ’ ’, ’W’

14 CHAPTER 2. SIMPLE EXPRESSIONS

In addition, there are several kinds of escape sequences with an alternate syntax. Each escape
sequence begins with the backslash character ‘\’.

’\’ The backslash character itself.
’\’’ The single-quote character.
’\t’ The tab character.
’\r’ The carraige-return character.
’\n’ The newline character.
’\b’ The backspace character.
’\ddd’ A decimal escape sequence.
’\xhh’ A hexadecimal escape sequence.

A decimal escape sequence must have exactly three decimal characters d, and specifies the ASCII
character with the specified decimal code. A hexadecimal escape sequence must have exactly two
hexadecimal characters h.

’a’, ’Z’, ’\120’, ’\t’, ’\n’, ’\x7e’

There are functions for converting between characters and integers. The function Char.code
returns the integer corresponding to a character, and Char.chr returns the character with the given
ASCII code. The Char.lowercase and Char.uppercase functions give the equivalent lower- or
upper-case characters.

’\120’;;
- : char = ’x’
Char.code ’x’;;
- : int = 120
’\x7e’;;
- : char = ’~’
Char.uppercase ’z’;;
- : char = ’Z’
Char.uppercase ’[’;;
- : char = ’[’
Char.chr 32;;
- : char = ’ ’

2.2.5 string: character strings

In OCaml, character strings belong to a primitive type string. Unlike strings in C, character strings
are not arrays of characters, and they do not use the null-character ’\000’ for termination.

The syntax for strings uses the double-quote symbol ‘"’ as a delimiter. Characters in the string
may use the escape sequences defined for characters.

"Hello", "The character ’\000’ is not a terminator", "\072\105"

The ^ operator performs string concatenation.

2.2. BASIC EXPRESSIONS 15

"Hello " ^ " world\n";;
- : string = "Hello world\n"
"The character ’\000’ is not a terminator";;
- : string = "The character ’\000’ is not a terminator"
"\072\105";;
- : string = "Hi"

Strings also allow random access. The expression s.[i] returns the i’th from string s; and
the expression s.[i] <- c replaces the i’th in string s by character c, returing a unit value. The
String module (see Section ??) also defines many functions to manipulate strings, including the
String.length function, which returns the length of a string; and the String.sub function, which
returns a substring.

"Hello".[1];;
- : char = ’e’
"Hello".[0] <- ’h’;;
- : unit = ()
String.length "Abcd\000";;
- : int = 5
String.sub "Ab\000cd" 1 3;;
- : string = "b\000c"

2.2.6 bool: the Boolean values

The bool type is used to represent the Boolean values true and false. Logical negation of Boolean
values is performed by the not function.

There are several relations that can be used to compare values, returning true if the comparison
holds and false otherwise.

x = y x is equal to y.
x == y x is “identical” to y.
x <> y x is not equal to y.
x < y x is less than y.
x <= y x is no more than y.
x >= y x is no less than y.
x > y x is greater than y.

These relations operate on two values x and y having equal but arbitrary type. For the primitive
types in this chapter, the comparison is what you would expect. For values of other types, the value
is implementation-dependent, and in some cases may raise a runtime error. For example, functions
(discussed in the next chapter) cannot be compared.

The == deserves special mention, since we use the word “identical” in an informal sense. The
exact semantics is this: if the expression “x == y” evaluates to true, then so does the expression
“x = y”. However it is still possible for “x = y” to be true even if “x == y” is not. In the OCaml
implementation from INRIA, the expression “x == y” evaluates to true only if the two values x
and y are exactly the same value. The comparison == is a constant-time operation that runs in a
bounded number of machine instructions; the comparison = is not.

16 CHAPTER 2. SIMPLE EXPRESSIONS

2 < 4;;
- : bool = true
"A good job" > "All the tea in China";;
- : bool = false
2 + 6 = 8;;
- : bool = true
1.0 = 1.0;;
- : bool = true
1.0 == 1.0;;
- : bool = false
2 == 1 + 1;;
- : bool = true

Strings are compared lexicographically (in alphabetical-order), so the second example is false
because the character ‘l’ is greater than the space-character ‘ ’ in the ASCII character set. The
comparison “1.0 == 1.0” in this case returns false (because the 2 floating-point numbers were
typed separately), but it performs normal comparison on int values.

There are two logical operators: && is conjunction (and), and || is disjunction (or). Both
operators are the “short-circuit” versions: the second clause is not evaluated if the result can be
determined from the first clause.

1 < 2 || (1 / 0) > 0;;
- : bool = true
1 < 2 && (1 / 0) > 0;;
Exception: Division_by_zero.
1 > 2 && (1 / 0) > 0;;
- : bool = false

Conditionals are expressed with the syntax if b then e1 else e2.

if 1 < 2 then
3 + 7

else
4;;

- : int = 10

2.3 Operator precedences

The precedences of the operators in this section are as follows, listed in increasing order.

Operators Associativity
|| left
&& left
=, ==, !=, <>, <, <=, >, >= left
+, -, +., -. left
*, /, *., /., mod, land, lor, lxor left
lsl, lsr, asr right
lnot left
~-, -, ~-., -. right

2.4. THE OCAML TYPE SYSTEM 17

2.4 The OCaml type system

The ML languages are statically and strictly typed. In addition, every expression has a exactly one
type. In contrast, C is a weakly-typed language: values of one type can usually be coerced to a
value of any other type, whether the coercion makes sense or not. Lisp is not a statically typed
language: the compiler (or interpreter) will accept any program that is syntactically correct; the
types are checked at run time. The type system is not necessarily related to safety: both Lisp and
ML are safe languages, while C is not.

What is “safety?” There is a formal definition based on the operational semantics of the program-
ming language, but an approximate definition is that a valid program will never fault because of an
invalid machine operation. All memory accesses will be valid. ML guarantees safety by proving that
every program that passes the type checker can never produce a machine fault, and Lisp guarantees
it by checking for validity at run time. One surprising (some would say annoying) consequence is
that ML has no nil or NULL values; these would potentially cause machine errors if used where a
value is expected.

As you learn OCaml, you will initially spend a lot of time getting the OCaml type checker to
accept your programs. Be patient, you will eventually find that the type checker is one of your best
friends. It will help you figure out where errors may be lurking in your programs. If you make a
change, the type checker will help track down the parts of your program that are affected.

In the meantime, here are some rules about type checking.

1. Every expression has exactly one type.

2. When an expression is evaluated, one of four things may happen:

(a) it may evaluate to a value of the same type as the expression,

(b) it may raise an exception (we’ll discuss exceptions in Chapter 7),

(c) it may not terminate,

(d) it may exit.

One of the important points here is that there are no “pure commands.” Even assignments
produce a value (although the value has the trivial unit type).

To begin to see how this works, let’s look at the conditional expression.

<kenai 229>cat -b x.ml
1 if 1 < 2 then
2 1
3 else
4 1.3

<kenai 230>ocamlc -c x.ml
File "x.ml", line 4, characters 3-6:
This expression has type float but is here used with type int

This error message seems rather cryptic: it says that there is a type error on line 4, characters 3-6
(the expression 1.3). The conditional expression evaluates the test. If the test is true, it evaluates
the first branch. Otherwise, it evaluates the second branch. In general, the compiler doesn’t try
to figure out the value of the test during type checking. Instead, it requires that both branches of

18 CHAPTER 2. SIMPLE EXPRESSIONS

the conditional have the same type (so that the value will have the same type no matter how the
test turns out). Since the expressions 1 and 1.3 have different types, the type checker generates an
error.

One other issue: the else branch is not required in a conditional. If it is omitted, the conditional
is treated as if the else case returns the () value. The following code has a type error.

% cat -b y.ml
1 if 1 < 2 then
2 1

% ocamlc -c y.ml
File "y.ml", line 2, characters 3-4:
This expression has type int but is here used with type unit

In this case, the expression 1 is flagged as a type error, because it does not have the same type
as the omitted else branch.

2.5 Compiling your code

You aren’t required to use the toploop for all your programs. In fact, as your programs become
larger, you will begin to use the toploop less, and rely more on the OCaml compilers. Here is a brief
introduction to using the compiler; more information is given in the Chapter 10.

If you wish to compile your code, you should place it in a file with the .ml suffix. In INRIA
OCaml, there are two compilers: ocamlc compiles to byte-code, and ocamlopt compiles to native
machine code. The native code is several times faster, but compile time is longer. The usage is
similar to cc. The double-semicolon terminators are not necessary in .ml source files; you may omit
them if the source text is unambiguous.

• To compile a single file, use ocamlc -g -c file.ml. This will produce a file file.cmo. The
ocamlopt programs produces a file file.cmx. The -g option is valid only for ocamlc; it causes
debugging information to be included in the output file.

• To link together several files into a single executable, use ocamlc to link the .cmo files. Nor-
mally, you would also specify the -o program file option to specify the output file (the
default is a.out). For example, if you have two program files x.cmo and y.cmo, the command
would be:

% ocamlc -g -o program x.cmo y.cmo
% ./program
...

There is also a debugger ocamldebug that you can use to debug your programs. The usage is
a lot like gdb, with one major exception: execution can go backwards. The back command will go
back one instruction.

Chapter 3

Variables and Functions

So far, we have considered only simple expressions not involving variables. In ML, variables are
names for values. Variable bindings are introduced with the let keyword. The syntax of a simple
top-level definition is as follows.

let name = expr

For example, the following code defines two variables x and y and adds them together to get a value
for z.

let x = 1;;
val x : int = 1
let y = 2;;
val y : int = 2
let z = x + y;;
val z : int = 3

Definitions using let can also be nested using the in form.

let name = expr1 in expr2

The expression expr2 is called the body of the let. The variable name is defined as the value of
expr1 within the body. The variable named name is defined only in the body expr2 and not expr1.

Lets with a body are expressions; the value of a let expression is the value of the body.

let x = 1 in
let y = 2 in

x + y;;
- : int = 3
let z =

let x = 1 in
let y = 2 in

x + y;;
val z : int = 3

19

20 CHAPTER 3. VARIABLES AND FUNCTIONS

Binding is static (lexical scoping), meaning that the value associated with a variable is determined
by the nearest enclosing definition in the program text. For example, when a variable is defined in a
let expression, the defined value is used within the body of the let (or the rest of the file for toplevel
let definitions). If the variable was defined previously, the previous value is shadowed, meaning
that it becomes inaccessible while the new definition is in effect.

For example, consider the following program, where the variable x is initially defined to be 7.
Within the definition for y, the variable x is redefined to be 2. The value of x in the final expression
x + y is still 7, and the final result is 10.

let x = 7 in
let y =

let x = 2 in
x + 1

in
x + y;;

- : int = 10

Similarly, the value of z in the following program is 8, because of the definitions that double the
value of x.

let x = 1;;
val x : int = 1
let z =

let x = x + x in
let x = x + x in

x + x;;
val z : int = 8
x;;
- : int = 1

3.1 Functions

Functions are defined with the fun keyword.

fun v1 v2 · · · vn -> expr

The fun is followed by a sequence of variables that define the formal parameters of the function,
the -> separator, and then the body of the function expr. By default, functions are anonymous,
which is to say that they are not named. In ML, functions are values like any other. Functions may
be constructed, passed as arguments, and applied to arguments, and, like any other value, they may
be named by using a let.

let increment = fun i -> i + 1;;
val increment : int -> int = <fun>

Note the type int -> int for the function. The arrow -> stands for a function type. The type
before the arrow is the type of the function’s argument, and the type after the arrow is the type
of the result. The increment function takes an argument of type int, and returns a result of type
int.

3.1. FUNCTIONS 21

The syntax for function application (function call) is concatenation: the function is followed by
its arguments. The precedence of function application is higher than most operators. Parentheses
are needed for arguments that are not simple expressions.

increment 2;;
- : int = 3
increment 2 * 3;;
- : int = 9
increment (2 * 3);;
- : int = 7

Functions may also be defined with multiple arguments. For example, a function to compute the
sum of two integers might be defined as follows.

let sum = fun i j -> i + j;;
val sum : int -> int -> int = <fun>
sum 3 4;;
- : int = 7

Note the type for sum: int -> int -> int. The arrow associates to the right, so this type is the
same as int -> (int-> int). That is, sum is a function that takes a single integer argument, and
returns a function that takes another integer argument and returns an integer. Strictly speaking,
all functions in ML take a single argument; multiple-argument functions are implemented as nested
functions (this is called “Currying,” after Haskell Curry, a famous logician who had a significant
impact on the design and interpretation of programming languages). The definition of sum above is
equivalent to the following explicitly-curried definition.

let sum = (fun i -> (fun j -> i + j));;
val sum : int -> int -> int = <fun>
sum 4 5;;
- : int = 9

The application of a multi-argument function to only one argument is called a “partial application.”

let incr = sum 1;;
val incr : int -> int = <fun>
incr 5;;
- : int = 6

Since named functions are so common, OCaml provides an alternate syntax for functions using
a let definition. The formal parameters of the function are listed after to the function name, before
the equality symbol.

let name v1 v2 · · · vn = expr

For example, the following definition of the sum function is equivalent to the ones above.

let sum i j =
i + j;;

val sum : int -> int -> int = <fun>

22 CHAPTER 3. VARIABLES AND FUNCTIONS

3.1.1 Scoping and nested functions

Functions may be arbitrarily nested. They may also be passed as arguments. The rule for scoping
uses static binding: the value of a variable is determined by the code in which a function is defined—
not by the code in which a function is evaluated. For example, another way to define sum is as follows.

let sum i =
let sum2 j =

i + j
in

sum2;;
val sum : int -> int -> int = <fun>
sum 3 4;;
- : int = 7

To illustrate the scoping rules, let’s consider the following definition.

let i = 5;;
val i : int = 5
let addi j =

i + j;;
val addi : int -> int = <fun>
let i = 7;;
val i : int = 7
addi 3;;
- : val = 8

In the addi function, the value of i is defined by the previous definition of i as 5. The second
definition of i has no effect on the definition for addi, and the application of addi to the argument
3 results in 3 + 5 = 8.

3.1.2 Recursive functions

Suppose we want to define a recursive function: that is, a function that is used in its own function
body. In functional languages, recursion is used to express repetition or looping. For example, the
“power” function that computes xi might be defined as follows.

let rec power i x =
if i = 0 then

1.0
else

x *. (power (i - 1) x);;
val power : int -> float -> float = <fun>
power 5 2.0;;
- : float = 32

Note the use of the rec modifier after the let keyword. Normally, the function is not defined in
its own body. The following definition is rejected.

3.1. FUNCTIONS 23

let power_broken i x =
if i = 0 then

1.0
else

x *. (power_broken (i - 1) x);;

Characters 70-82:
x *. (power_broken (i - 1) x);;

^^^^^^^^^^^^
Unbound value power_broken

Mutually recursive definitions (functions that call one another) can be defined using the and
keyword to connect several let definitions.

let rec f i j =
if i = 0 then

j
else

g (j - 1)
and g j =

if j mod 3 = 0 then
j

else
f (j - 1) j;;

val f : int -> int -> int = <fun>
val g : int -> int = <fun>
g 5;;
- : int = 3

3.1.3 Higher order functions

Let’s consider a definition where a function is passed as an argument, and another function is
returned as a result. Given an arbitrary function f on the real numbers, a numerical derivative is
defined approximately as follows.

let dx = 1e-10;;
val dx : float = 1e-10
let deriv f =

(fun x -> (f (x +. dx) -. f x) /. dx);;
val deriv : (float -> float) -> float -> float = <fun>

Remember, the arrow associates to the right, so another way to write the type is
(float -> float) -> (float -> float). That is, the derivative is a function that takes a func-
tion as an argument, and returns a function.

Let’s apply the deriv function to the power function defined above, partially applied to the
argument 3.

24 CHAPTER 3. VARIABLES AND FUNCTIONS

let f = power 3;;
val f : float -> float = <fun>
f 10.0;;
- : float = 1000
let f’ = deriv f;;
val f’ : float -> float = <fun>
f’ 10.0;;
- : float = 300.000237985
f’ 5.0;;
- : float = 75.0000594962
f’ 1.0;;
- : float = 3.00000024822

As we would expect, the derivative of x3 is approximately 3x2. To get the second derivative, we
apply the deriv function to f’.

let f’’ = deriv f’;;
val f’’ : float -> float = <fun>
f’’ 0.0;;
- : float = 6e-10
f’’ 1.0;;
- : float = 0
f’’ 10.0;;
- : float = 0

The second derivative, which we would expect to be 6x, is way off! Ok, there are some numerical
errors here. Don’t expect functional programming to solve all your problems.

let g x = 3.0 *. x *. x;;
val g : float -> float = <fun>
let g’ = deriv g;;
val g’ : float -> float = <fun>
g’ 1.0;;
- : float = 6.00000049644
g’ 10.0;;
- : float = 59.9999339101

3.2 Variable names

As you may have noticed in the previous section, the single quote symbol (’) is a valid character in
a variable name. In general, a variable name may contain letters (lower and upper case), digits, and
the ’ and characters. but it must begin with a lowercase letter or the underscore character, and it
may not be the all by itself.

In OCaml, sequences of characters from the infix operators, like +, -, *, /, ... are also valid
names. The normal prefix version is obtained by enclosing them in parentheses. For example, the
following code is a proper entry for the Obfuscated ML contest. Don’t use this style in your code.

3.2. VARIABLE NAMES 25

let (+) = (*)
and (-) = (+)
and (*) = (/)
and (/) = (-);;

val + : int -> int -> int = <fun>
val - : int -> int -> int = <fun>
val * : int -> int -> int = <fun>
val / : int -> int -> int = <fun>
5 + 4 / 1;;
- : int = 15

Note that the * operator requires space within the parenthesis. This is because of comment
conventions—comments start with (* and end with *).

The redefinition of infix operators may make sense in some contexts. For example, a program
module that defines arithmetic over complex numbers may wish to redefine the arithmetic operators.
It is also sensible to add new infix operators. For example, we may wish to have an infix operator
for the power construction.

let (**) x i = power i x;;
val ** : float -> int -> float = <fun>
10.0 ** 5;;
- : float = 100000

The precedence and associativity of new infix operators is determined by its first character in
the operator name. For example an operator named +/- would have the same precedence and
associativity as the + operator.

26 CHAPTER 3. VARIABLES AND FUNCTIONS

Chapter 4

Basic Pattern Matching

One of ML’s more powerful features is the use of pattern matching to define expressions by case
analysis. Pattern matching is indicated by a match expression, which has the following syntax.

match expression with
pattern1 -> expression1

| pattern2 -> expression2
...
| patternn -> expressionn

When a match expression is evaluated, it evaluates the expression expression, and compares the
value with the patterns. If patterni is the first pattern to match, then expressioni is evaluated and
returned as the result of the match.

A simple pattern is an expression made of constants and variables. A constant pattern c matches
values that are equal to it, and a variable pattern x matches any expression. A variable pattern x
is a binding occurrence; when the match is performed, the variable x is bound the the value being
matched.

For example, Fibonacci numbers can be defined succinctly using pattern matching. Fibonacci
numbers are defined inductively: fib 0 = 0, fib 1 = 1, and for all other natural numbers i,
fib i = fib(i− 1) + fib(i− 2).

27

28 CHAPTER 4. BASIC PATTERN MATCHING

let rec fib i =
match i with

0 -> 0
| 1 -> 1
| j -> fib (j - 2) + fib (j - 1);;

val fib : int -> int = <fun>
fib 1;;
- : int = 1
fib 2;;
- : int = 1
fib 3;;
- : int = 2
fib 6;;
- : int = 8

In this code, the argument i is compared against the constants 0 and 1. If either of these
cases match, the return value is equal to i. The final pattern is the variable j, which matches
any argument. When this pattern is reached, j takes on the value of the argument, and the body
fib (j - 2) + fib (j - 1) computes the returned value.

Note that variables occurring in a pattern are always binding occurrences. For example, the
following code produces a result you might not expect. The first case matches all expressions,
returning the value matched. The toploop issues a warning for the second and third cases.

let zero = 0;;
let one = 1;;
let rec fib i =

match i with
zero -> zero

| one -> one
| j -> fib (j - 2) + fib (j - 1);;

Characters 57-60:
Warning: this match case is unused.
Characters 74-75:
Warning: this match case is unused.

| one -> one
^^^

| j -> fib (j - 2) + fib (j - 1);;
^

val fib : int -> int = <fun>
fib 1;;
- : int = 1
fib 10;;
- : int = 10
fib 2002;;
- : int = 2002

4.1. FUNCTIONS WITH MATCHING 29

4.1 Functions with matching

It is quite common for the body of an ML function to be a match expression. To simplify the syntax
somewhat, OCaml defines the function keyword (instead of fun) to represent a function that is
defined by pattern matching. A function definition is like a fun, where a single argument is used
in a pattern match. The fib definition using function is as follows.

let rec fib = function
0 -> 0

| 1 -> 1
| i -> fib (i - 1) + fib (i - 2);;

val fib : int -> int = <fun>
fib 1;;
- : int = 1
fib 6;;
- : int = 8

4.2 Values of other types

Patterns can also be used with values having the other basic types, like characters, strings, and
Boolean values. In addition, multiple patterns can be used for a single body. For example, one way
to check for capital letters is with the following function definition.

let is_uppercase = function
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’

| ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’
| ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’
| ’Y’ | ’Z’ ->

true
| c ->

false;;
val is_uppercase : char -> bool = <fun>
is_uppercase ’M’;;
- : bool = true
is_uppercase ’m’;;
- : bool = false

It is rather tedious to specify all the letters one at a time. OCaml also allows pattern ranges
c1..c2, where c1 and c2 are character constants.

let is_uppercase = function
’A’ .. ’Z’ -> true

| c -> false;;
val is_uppercase : char -> bool = <fun>
is_uppercase ’M’;;
- : bool = true
is_uppercase ’m’;;
- : bool = false

30 CHAPTER 4. BASIC PATTERN MATCHING

Note that the pattern variable c in these functions acts as a “wildcard” pattern to handle all non-
uppercase characters. The variable itself is not used in the body false. This is another commonly
occurring structure, and OCaml provides a special pattern for cases like these. The pattern (a
single underscore character) is a wildcard pattern that matches anything. It is not a variable (so it
can’t be used in an expression). The is uppercase function would normally be written this way.

let is_uppercase = function
’A’ .. ’Z’ -> true

| _ -> false;;
val is_uppercase : char -> bool = <fun>
is_uppercase ’M’;;
- : bool = true
is_uppercase ’m’;;
- : bool = false

The values being matched are not restricted to the basic scalar types like integers and characters.
String matching is also supported, using the usual syntax.

let names = function
"first" -> "George"

| "last" -> "Washington"
| _ -> ""

val names : string -> string = <fun>
names "first";;
- : string = "George"
names "Last";;
- : string = ""
\end[iverbatim]

Matching against floating-point values, while supported, is rarely
used because of numerical issues. The following example illustrates
the issue.

@begin[iverbatim]
match 4.3 -. 1.2 with

3.1 -> true
| _ -> false;;

- : bool = false

4.3 Incomplete matches

You might wonder about what happens if the match expression does not include patterns for all
the possible cases. For example, what happens if we leave off the default case in the is uppercase
function?

4.3. INCOMPLETE MATCHES 31

let is_uppercase = function
’A’ .. ’Z’ -> true;;

Characters 19-49:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
’a’
val is_uppercase : char -> bool = <fun>

The OCaml compiler and toploop are verbose about inexhaustive patterns. They warn when the
pattern match is inexhaustive, and even suggest a case that is not matched. An inexhaustive set
of patterns is usually an error—what would happen if we applied the is uppercase function to a
non-uppercase character?

is_uppercase ’M’;;
- : bool = true
is_uppercase ’m’;;
Uncaught exception: Match_failure("", 19, 49)

Again, OCaml is fairly strict. In the case where the pattern does not match, it raises an exception
(we’ll see more about exceptions in Chapter 7). In this case, the exception means that an error
occurred during evaluation (a pattern matching failure).

A word to the wise: heed the compiler warnings! The compiler generates warnings for possible
program errors. As you build and modify a program, these warnings will help you find places in
the program text that need work. In some cases, you may be tempted to ignore the compiler. For
example, in the following function, we know that a complete match is not needed if the is odd
function is always applied to nonnegative numbers.

let is_odd i =
match i mod 2 with

0 -> false
| 1 -> true;;

Characters 18-69:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
2
val is_odd : int -> bool = <fun>
is_odd 3;;
- : bool = true
is_odd 12;;
- : bool = false

However, do not ignore the warning! If you do, you will find that you begin to ignore all the
compiler warnings—both real and bogus. Eventually, you will overlook real problems, and your
program will become hard to maintain. For now, you should add the default case that raises an
exception manually. The Invalid argument exception is designed for this purpose. It takes a string
argument that is usually used to identify the name of the place where the failure occurred. You can
generate an exception with the raise construction.

32 CHAPTER 4. BASIC PATTERN MATCHING

let is_odd i =
match i mod 2 with

0 -> false
| 1 -> true
| _ -> raise (Invalid_argument "is_odd");;

val is_odd : int -> bool = <fun>
is_odd 3;;
- : bool = true
is_odd (-1);;
Uncaught exception: Invalid_argument("is_odd")

4.4 Patterns are everywhere

It may not be obvious at this point, but patterns are used in all the binding mechanisms, including
the let and fun constructions. The general forms are as follows.

let pattern = expression

let name pattern . . . pattern = expression

fun pattern -> expression

These forms aren’t much use with constants because the pattern match will always be inexhaus-
tive (except for the () pattern). However, they will be handy when we introduce tuples and records
in the next chapter.

let is_one = fun 1 -> true;;
Characters 13-26:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
0
val is_one : int -> bool = <fun>
let is_one 1 = true;;
Characters 11-19:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
0
val is_one : int -> bool = <fun>
is_one 1;;
- : bool = true
is_one 2;;
Uncaught exception: Match_failure("", 11, 19)
let is_unit () = true;;
val is_unit : unit -> bool = <fun>
is_unit ();;
- : bool = true

Chapter 5

Tuples, Lists, and Polymorphism

In the chapters leading up to this one, we have seen simple expressions involving numbers,
characters, strings, functions and variables. This language is already Turing complete—we can code
arbitrary data types using numbers, functions, and string. Of course, in practice, this would not
only be inefficient, it would also make it very hard to understand our programs. For efficient and
readable data structure implementations we need to be able to structure and compose data.

OCaml provides a rich set of types for defining data structures, including tuples, lists, disjoint
unions (also called tagged unions, or variant records), records, and arrays. In this chapter, we’ll look
at the simplest part of these—tuples and lists. We’ll discuss unions in Chapter 6, and we’ll leave
the remaining types for Chapter 8, when we introduce side-effects.

5.1 Polymorphism

As we explore the type system, polymorphism will be one of the first concepts that we encounter.
The ML languages provide parametric polymorphism. That is, types and expressions may be pa-
rameterized by type variables. For example, the identity function (the function that returns its
argument) can be expressed in ML with a single function.

let identity x = x;;
val identity : ’a -> ’a = <fun>
identity 1;;
- : int = 1
identity "Hello";;
- : string = "Hello"

Type variables are lowercase identifiers preceded by a single quote (’). A type variable represents
an arbitrary type. The typing identity : ’a -> ’a says that the identity function takes an
argument of some arbitrary type ’a and returns a value of the same type ’a. If the identity
function is applied to a value with type int, then it returns a value of type int; if it is applied
to a string, then it returns a string. The identity function can even be applied to function
arguments.

33

34 CHAPTER 5. TUPLES, LISTS, AND POLYMORPHISM

let succ i = i + 1;;
val succ : int -> int = <fun>
identity succ;;
- : int -> int = <fun>
(identity succ) 2;;
- : int = 3

In this case, the (identity succ) expression returns the succ function itself, which can be
applied to 2 to return 3.

5.1.1 Value restriction

What happens if we apply the identity to a polymorphic function type?

let identity’ = identity identity;;
val identity’ : ’_a -> ’_a = <fun>
identity’ 1;;
- : int = 1
identity’;;
- : int -> int = <fun>
identity’ "Hello";;
Characters 10-17:
This expression has type string
but is here used with type int

This doesn’t quite work as we expect. Note the type assignment identity’ : ’_a -> ’_a.
The type variables ’_a are now preceded by an underscore. These type variables specify that the
identity’ function takes an argument of some (as yet unknown) type, and returns a value of the
same type. The identity’ function is not truly polymorphic, because it can be used with values
of only one type. When we apply the identity’ function to a number, the type of the identity’
function becomes int -> int, and it is no longer possible to apply it to a string.

This behavior is due to the value restriction: for an expression to be truly polymorphic, it must
be a value. Values are immutable expressions that are not applications. For example, numbers and
characters are values. Functions are also values. Function applications, like identity identity
are not values, because they can be simplified (the identity identity expression evaluates to
identity).

Why does OCaml have this restriction? It probably seems silly, but the value restriction is a
simple way to maintain correct typing in the presence of side-effects. For example, suppose we had
two functions set : ’a -> unit and get : unit -> ’a that share a storage location. The intent
is that the function get should return the last value that was saved with set. That is, if we call
set 10, then get () should return the 10 (of type int). However, the type get : unit ->’a is
clearly too permissive. It states that get returns a value of arbitrary type, no matter what value
was saved with set.

The solution here is to use the restricted types set : ’_a ->unit and get : unit -> ’_a. In
this case, the set and get functions can be used only with values of a single type. Now, if we call
set 10, the type variable ’_a becomes int, and the type of the get function becomes unit-> int.

The general principle of the value restriction is that mutable values are not polymorphic. In
addition, applications are not polymorphic because the function might create a mutable value, or

5.1. POLYMORPHISM 35

perform an assignment. This is the case even for simple applications like identity identity where
it is obvious that no assignments are being performed.

However, it is usually easy to get around the value restriction by using a technique called eta-
expansion. Suppose we have an expression e of function type. The expression (fun x ->e x)
is nearly equivalent—in fact, it is equivalent if e does not contain side-effects. The expression
(fun x -> e x) is a function, so it is a value, and it may be polymorphic. Consider this redefinition
of the identity’ function.

let identity’ = (fun x -> (identity identity) x);;
val identity’ : ’a -> ’a = <fun>
identity’ 1;;
- : int = 1
identity’ "Hello";;
- : string = "Hello"

The new version of identity’ computes the same value as the previous definition of identity’,
but now it is properly polymorphic.

5.1.2 Other kinds of polymorphism

Polymorphism can be a powerful tool. In ML, a single identity function can be defined that works
on all types. In a non-polymorphic language like C, a separate identity function would have to be
defined for each type.

int int_identity(int i)
{

return i;
}

struct complex { float real; float imag; };

struct complex complex_identity(struct complex x)
{

return x;
}

Overloading

Another kind of polymorphism present in some languages is overloading (also called ad-hoc poly-
morphism). Overloading allows functions definitions to have the same name if they have different
parameter types. When an application is encountered, the compiler selects the appropriate function
by comparing the available functions against the type of the arguments. For example, in Java we
could define a class that includes several definitions of addition for different types (note that the +
operator is already overloaded).

36 CHAPTER 5. TUPLES, LISTS, AND POLYMORPHISM

class Adder {
static int Add(int i, int j) {

return i + j;
}
static float Add(float x, float y) {

return x + y;
}
static String Add(String s1, String s2) {

return s1.concat(s2);
}

}

The expression Adder.Add(5, 7) would evaluate to 12, while the expression
Adder.Add("Hello ", "world") would evaluate to the string "Hello world".

OCaml does not provide overloading. There are probably two main reasons. One has to do with
a technical difficuly. It is hard to provide both type inference and overloading at the same time.
For example, suppose the + function were overloaded to work both on integers and floating-point
values. What would be the type of the following add function? Would it be int ->int -> int, or
float -> float -> float?

let add x y =
x + y;;

The best solution would probably to have the compiler produce two instances of the add function,
one for integers and another for floating point values. This complicates the compiler, and with a
sufficiently rich type system, type inference would become uncomputable. That would be a problem.

The second reason for not providing overloading is that programs can become more difficult
to understand. It may not be obvious by looking at the program text which one of a function’s
definitions is being called, and there is no way for a compiler to check if all the function’s definitions
do “similar” things1.

Subtype polymorphism and dynamic method dispatch

Subtype polymorphism and dynamic method dispatch are concepts used extensively in object-
oriented programs. Both kinds of polymorphism are fully supported in OCaml. We discuss the
object system in Chapter 12.1.3.

5.2 Tuples

Tuples are the simplest aggregate type. They correspond to the ordered tuples you have seen in
mathematics, or set theory. A tuple is a collection of values of arbitrary types. The syntax for a
tuple is a sequence of expressions separated by commas. For example, the following tuple is a pair
containing a number and a string.

1 The second reason is weaker. Properly used, overloading reduces namespace clutter by grouping similar functions
under the same name. True, overloading is grounds for obfuscation, but OCaml is already ripe for obfuscation by
allowing arithmetic functions like + to be redefined.

5.2. TUPLES 37

let p = 1, "Hello";;
val p : int * string = 1, "Hello"

The syntax for the type of a tuple is a *-separated list of the types of the components. In this
case, the type of the pair is int * string.

Tuples can be deconstructed by pattern matching with any of the pattern matching constructs
like let, match, fun, or function. For example, to recover the parts of the pair in the variables x
and y, we might use a let form.

let x, y = p;;
val x : int = 1
val y : string = "Hello"

The built-in functions fst and snd return the components of a pair, defined as follows.

let fst (x, _) = x;;
val fst : ’a * ’b -> ’a = <fun>
let snd (_, y) = y;;
val snd : ’a * ’b -> ’b = <fun>
fst p;;
- : int = 1
snd p;;
- : string = "Hello"

Tuple patterns in a function argument must be enclosed in parentheses. Note that the fst and
snd functions are polymorphic. They can be applied to a pair of any type ’a * ’b; fst returns
a value of type ’a, and snd returns a value of type ’b. There are no similar built-in functions for
tuples with more than two elements, but they can be defined.

let t = 1, "Hello", 2.7;;
val t : int * string * float = 1, "Hello", 2.7
let fst3 (x, _, _) = x;;
val fst3 : ’a * ’b * ’c -> ’a = <fun>
fst3 t;;
- : int = 1

Note also that the pattern assignment is simultaneous. The following expression swaps the values
of x and y.

let x = 1;;
val x : int = 1
let y = "Hello";;
val y : string = "Hello"
let x, y = y, x;;
val x : string = "Hello"
val y : int = 1

Since the components of a tuple are unnamed, tuples are most appropriate if they have a small
number of well-defined components. For example, tuples would be an appropriate way of defining
Cartesian coordinates.

38 CHAPTER 5. TUPLES, LISTS, AND POLYMORPHISM

let make_coord x y = x, y;;
val make_coord : ’a -> ’b -> ’a * ’b = <fun>
let x_of_coord = fst;;
val x_of_coord : ’a * ’b -> ’a = <fun>
let y_of_coord = snd;;
val y_of_coord : ’a * ’b -> ’b = <fun>

However, it would be awkward to use tuples for defining database entries, like the following. For
that purpose, records would be more appropriate. Records are defined in Chapter 8.

(* Name, Height, Phone, Salary *)
let jason = ("Jason", 6.25, "626-395-6568", 50.0);;

val jason : string * float * string * float =
let name_of_entry (name, _, _, _) = name;;
val name_of_entry : ’a * ’b * ’c * ’d -> ’a = <fun>

"Jason", 6.25, "626-395-6568", 50
name_of_entry jason;;
- : string = "Jason"

5.3 Lists

Lists are also used extensively in OCaml programs. A list is a sequence of values of the same type.
There are two constructors: the [] expression is the empty list, and the e1::e2 expression, called a
cons operation, creates a cons cell—a new list where the first element is e1 and the rest of the list
is e2. The shorthand notation [e1;e2; · · · ;en] is identical to e1::e2:: · · · ::en:: [].

let l = "Hello" :: "World" :: [];;
val l : string list = ["Hello"; "World"]

The syntax for the type of a list with elements of type t is t list. The list type is an example
of a parameterized type. An int list is a list containing integers, a string list is a list containing
strings, and an ’a list is a list containing elements of some type ’a (but all the elements have to
have the same type).

Lists can be deconstructed using pattern matching. For example, here is a function that adds
up all the numbers in an int list.

let rec sum = function
[] -> 0

| i :: l -> i + sum l;;
val sum : int list -> int = <fun>
sum [1; 2; 3; 4];;
- : int = 10

Functions on list can also be polymorphic. The function to check if a value x is in a list l might
be defined as follows.

5.3. LISTS 39

let rec mem x l =
match l with

[] -> false
| y :: l -> x = y || mem x l;;

val mem : ’a -> ’a list -> bool = <fun>
mem 5 [1; 7; 3];;
- : bool = false
mem "do" ["I’m"; "afraid"; "I"; "can’t";

"do"; "that"; "Dave"];;
- : bool = true

The function mem shown above takes an argument x of any type ’a, and checks if the element is
in the list l, which must have type ’a list.

Similarly, the standard map function, List.map, might be defined as follows.

let rec map f = function
[] -> []

| x :: l -> f x :: map f l;;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>
map succ [1; 2; 3; 4];;
- : int list = [2; 3; 4; 5]

The function map shown above takes a function f of type ’a -> ’b (this argument function takes
a value of type ’a and returns a value of type ’b), and a list containing elements of type ’a, and it
returns a list containing elements of type ’b—a ’b list.

Lists are commonly used to represent sets of values or key-value relationships. The List library
contains many list functions. For example, the List.assoc function returns the value associated
with a key in a list of key-value pairs. This function might be defined as follows:

let rec assoc key = function
(key2, value) :: l ->

if key2 = key then
value

else
assoc x l

| [] ->
raise Not_found;;

Here we see a combination of list and tuple pattern matching. The pattern (key2, value) :: l
should be read from the outside-in. The outermost operator is ::, so this pattern matches a
nonempty list, where the first element should be a pair (key2,value) and the rest of the list is
l. If this pattern matches, and if the key2 is equal to the argument key, then the value is returned
as a result. Otherwise, the search continues. If the search bottoms out with the empty list, the
default action is to raise an exception. According to convention in the List library, the Not_found
exception is normally used by functions that search through a list and terminate unsuccessfully.

Association lists can be used to represent a variety of data structures, with the restriction that
all values must have the same type. Here is a simple example.

40 CHAPTER 5. TUPLES, LISTS, AND POLYMORPHISM

let entry =
[("name", "Jason");
("height", "6’ 3’’");
("phone", "626-395-6568");
("salary", "$50")];;

val entry : (string * string) list =
["name", "Jason"; "height", "6’ 3’’";
"phone", "626-345-9692"; "salary", "$50"]

List.assoc "phone" entry;;
- : string = "626-395-6568"

Note that commas separate the elements of the pairs in the list, and semicolon separates the
items of the list.

Chapter 6

Unions

Disjoint unions, also called tagged unions or variant records, are an important part of the OCaml
type system. A disjoint union, or union for short, represents the union of several different types,
where each of the parts is given an unique, explicit name.

OCaml allows the definition of exact and open union types. The following syntax is used for an
exact union type; we discuss open types later in this chapter 6.6.

type typename =
Name1 of type1

| Name2 of type2
...
| Namen of typen

The union type is defined by a set of cases separated by the vertical bar (|) character. Each case
i has an explicit name Namei, called a constructor ; and it has an optional value of type typei. The
constructor name must be capitalized. The definition of typen is optional; if ommitted there is no
explicit value associated with the constructor.

Let’s look at a simple example using unions, where we wish to define a numeric type that is
either a value of type int or float or a canonical value Zero. We might define this type as follows.

type number =
Zero

| Integer of int
| Real of float;;

type number = Zero | Integer of int | Real of float

Values in a disjoint union are formed by applying a constructor to an expression of the appropriate
type.

41

42 CHAPTER 6. UNIONS

let zero = Zero;;
val zero : number = Zero
let i = Integer 1;;
val i : number = Integer 1
let x = Real 3.2;;
val x : number = Real 3.2

Patterns also use the constructor name. For example, we can define a function that returns
a floating-point representation of a number as follows. In this program, each pattern specifies a
constructor name as well as a variable for the constructors that have values.

let float_of_number = function
Zero -> 0.0

| Integer i -> float_of_int i
| Real x -> x

Patterns can be arbitrarily nested. The following function represents one way that we might
perform addition of values in the number type.

let add n1 n2 =
match n1, n2 with

Zero, n
| n, Zero ->

n
| Integer i1, Integer i2 ->

Integer (i1 + i2)
| Integer i, Real x
| Real x, Integer i ->

Real (x +. float_of_int i)
| Real x1, Real x2 ->

Real (x1 +. x2);;
val add : number -> number -> number = <fun>
add x i;;
- : number = Real 4.2

There are a few things to note in this pattern matching. First, we are matching against the pair
(n1, n2) of the numbers n1 and n2 being added. The patterns are then pair patterns. The first
clause specifies that if the first number is Zero and the second is n, or if the second number is Zero
and the first is n, then the sum is n.

Zero, n
| n, Zero ->

n

The second thing to note is that we are able to collapse some of the cases using similar patterns.
For example, the code for adding Integer and Real values is the same, whether the first number is
an Integer or Real. In both cases, the variable i is bound to the Integer value, and x to the Real
value.

OCaml allows two patterns p1 and p2 to be combined into a choice pattern p1 | p2 under two
conditions: both patterns must define the same variables; and, the value being matched by multiple

6.1. BINARY TREES 43

occurrences of a variable must have the same types. Otherwise, the placement of variables in p1 and
p2 is unrestricted.

In the remainder of this chapter we will describe the the disjoint union type more completely,
using a running example for building balanced binary trees, a frequently-used data structure in
functional programs.

6.1 Binary trees

Binary trees are frequently used for representing collections of data. A binary tree is a collection of
nodes (also called vertices), where each node has either zero or two nodes called children. If node
n2 is a child of n1, then n1 is called the parent of n2. One node, called the root, has no parents; all
other nodes have exactly one parent.

One way to represent this data structure is by defining a disjoint union for the type of a node
and its children. Since each node has either zero or two children, we need two cases. The following
definition defines the type for a labeled tree: the ’a type variable represents the type of labels; the
Node constructor represents a node with two children; and the Leaf constructor represents a node
with no children. Note that the type ’a tree is defined with a type parameter ’a for the type
of labels. Note that this type definition is recursive. The type ’a tree is mentioned in its own
definition.

type ’a tree =
Node of ’a * ’a tree * ’a tree

| Leaf;;
type ’a tree = | Node of ’a * ’a tree * ’a tree | Leaf

The use of tuple types in a constructor definition (for example,
Node of ’a * ’a tree * ’a tree) is quite common, and has an efficient implementation.
When applying a constructor, parentheses are required around the elements of the tuple. In
addition, even though constructors with arguments are similar to functions, they are not functions,
and may not be used as values.

Leaf;;
- : ’a btree = Leaf
Node (1, Leaf, Leaf);;
- : int btree = Node (1, Leaf, Leaf)
Node;;
The constructor Node expects 3 argument(s),
but is here applied to 0 argument(s)

Since the type definition for ’a tree is recursive, many of the functions defined on the tree
will also be recursive. For example, the following function defines one way to count the number of
non-leaf nodes in the tree.

let rec cardinality = function
Leaf -> 0

| Node (_, left, right) ->
cardinality left + cardinality right + 1;;

val cardinality : ’a btree -> int = <fun>
cardinality (Node (1, Node (2, Leaf, Leaf), Leaf));;
- : int = 2

44 CHAPTER 6. UNIONS

6.2 Unbalanced binary trees

Now that we have defined the type of binary trees, lets build a simple data structure for representing
sets of values of type ’a.

The empty set is just a Leaf. To add an element to a set s, we create a new Node with a Leaf
as a left-child, and s as the right child.

let empty = Leaf;;
val empty : ’a btree = Leaf
let insert x s = Node (x, Leaf, s);;
val insert : ’a -> ’a btree -> ’a btree = <fun>
let rec set_of_list = function

[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a btree = <fun>
let s = set_of_list [3; 5; 7; 11; 13];;
val s : int btree =

Node
(3, Leaf,
Node (5, Leaf,

Node (7, Leaf,
Node (11, Leaf, Node (13, Leaf, Leaf)))))

The membership function is defined recursively: an element x is a member of a tree iff the tree
is a Node and x is the label, or x is in the left or right subtrees.

let rec mem x = function
Leaf -> false

| Node (y, left, right) ->
x = y || mem x left || mem x right;;

val mem : ’a -> ’a btree -> bool = <fun>
mem 11 s;;
- : bool = true
mem 12 s;;
- : bool = false

6.3 Unbalanced, ordered, binary trees

One problem with the unbalanced tree defined here is that the complexity of the membership oper-
ation is O(n), where n is cardinality of the set.

We can can begin to address the performance by ordering the nodes in the tree. The invariant
we would like to maintain is the following: for any interior node Node (x, left, right), all the
labels in the left child are smaller than x, and all the labels in the right child are larger than x. To
maintain this invariant, we must modify the insertion function.

6.4. REVISITING PATTERN MATCHING 45

let rec insert x = function
Leaf -> Node (x, Leaf, Leaf)

| Node (y, left, right) ->
if x < y then

Node (y, insert x left, right)
else if x > y then

Node (y, left, insert x right)
else

Node (y, left, right);;
val insert : ’a -> ’a btree -> ’a btree = <fun>
let rec set_of_list = function

[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a btree = <fun>
let s = set_of_list [7; 5; 9; 11; 3];;
val s : int btree =

Node
(3, Leaf,
Node (11,

Node (9,
Node (5, Leaf, Node (7, Leaf, Leaf)), Leaf), Leaf))

Note that this insertion function still does not build balanced trees. For example, if elements are
inserted in increasing order, the tree will be completely unbalanced, with all the elements inserted
along the right branch.

For the membership function, we can take advantage of the set ordering to speed up the search.

let rec mem x = function
Leaf -> false

| Node (y, left, right) ->
x = y || (x < y && mem x left) || (x > y && mem y right);;

val mem : ’a -> ’a btree -> bool = <fun>
mem 5 s;;
- : bool = true
mem 9 s;;
- : bool = true
mem 12 s;;
- : bool = false

The complexity of this membership function is O(l) where l is the maximal depth of the tree.
Since the insert function does not guarantee balancing, the complexity is still O(n), worst case.

6.4 Revisiting pattern matching

The insert function as expressed above is slightly inefficient. The final else clause (containing
the expression Node (y,left, right)) returns a value that is equal to the one matched, but the

46 CHAPTER 6. UNIONS

application of the Node constructor creates a new value. The code would be more concise, and likely
more efficient, if the matched value were used as the result.

OCaml provides a pattern form for binding the matched value using the syntax pattern as
variable. In a clause p as v -> e, the variable v is a binding occurrence. When a value is successfully
matched with the pattern p, the variable v is bound to the value during evaluation of the body e.
The simplified insert function is as follows.

let rec insert x = function
Leaf -> Node (x, Leaf, Leaf)

| Node (y, left, right) as node ->
if x < y then

Node (y, insert x left, right)
else if x > y then

Node (y, left, insert x right)
else

node;;
val insert : ’a -> ’a btree -> ’a btree = <fun>

Patterns with as bindings may occur anywhere in a pattern. For ex-
ample, the pattern Node (y, left, right) is equivalent to the pattern
Node (_ as y, (_ as left), (_ as right)), though the former is preferred of course.
The parentheses are required because the as keyword has very low precedence, lower than comma
(,) and even the vertical bar (|).

Another extension to pattern matching is conditional matching with when clauses. The syntax
of a conditional match has the form pattern when expression. The expression is a predicate to be
evaluated if the pattern matches. The variables bound in the pattern may be used in the expression.
The match is successful if, and only if, the expression evaluates to true.

A version of the insert function using when clauses is listed below. When the pattern match
is performed, if the value is a Node, the second clause Node (y, left, right) when x < y is
considered. If x is less than y, then x is inserted into the left branch. Otherwise, then evaluation
falls through the the third clause Node (y, left, right) when x > y. If x is greater than y, then
x is inserted into the right branch. Otherwise, evaluation falls through to the final clause, which
returns the original node.

let rec insert x = function
Leaf ->

Node (x, Leaf, Leaf)
| Node (y, left, right) when x < y ->

Node (y, insert x left, right)
| Node (y, left, right) when x > y ->

Node (y, left, insert x right)
| node ->

node;;
val insert : ’a -> ’a btree -> ’a btree = <fun>

The performance of this version of the insert function is nearly identical to the previous def-
inition using if to perform the comparison between x and y. Whether to use when conditions is
usually a matter of style and preference.

6.5. BALANCED RED-BLACK TREES 47

6.5 Balanced red-black trees

In order to address the performance problem, we turn to an implementation of balanced binary trees.
We’ll use a functional implementation of red-black trees due to Chris Okasaki [4]. Red-black trees
add a label, either Red or Black, to each non-leaf node. We will establish several new invariants.

1. Every leaf is colored black.

2. All children of every red node are black.

3. Every path from the root to a leaf has the same number of black nodes as every other path.

4. The root is always black.

These invariants guarantee the balancing. Since all the children of a red node are black, and
each path from the root to a leaf has the same number of black nodes, the longest path is at most
twice as long as the shortest path.

The type definitions are similar to the unbalanced binary tree; we just need to add a red/black
label.

type color =
Red

| Black

type ’a rbtree =
Node of color * ’a * ’a rbtree * ’a rbtree

| Leaf

The membership function also has to be redefined for the new type.

let rec mem x = function
Leaf -> false

| Node (_, y, left, right) ->
x = y || (x < y && mem x left) || (x > y && mem x right)

The difficult part of the data structure is maintaining the invariants when a value is added to
the tree with the insert function. This can be done in two parts. First find the location where the
node is to be inserted. If possible, add the new node with a Red label because this would preserve
invariant 3. This may, however, violate invariant 2 because the new Red node may have a Red parent.

In order to preserve the invariant, we implement the balance function, which considers all the
cases where a Red node has a Red child and rearranges the tree.

48 CHAPTER 6. UNIONS

let balance = function
Black, z, Node (Red, y, Node (Red, x, a, b), c), d

| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->

Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
| a, b, c, d ->

Node (a, b, c, d)

let insert x s =
let rec ins = function

Leaf -> Node (Red, x, Leaf, Leaf)
| Node (color, y, a, b) as s ->

if x < y then balance (color, y, ins a, b)
else if x > y then balance (color, y, a, ins b)
else s

in
match ins s with (* guaranteed to be non-empty *)

Node (_, y, a, b) -> Node (Black, y, a, b)
| Leaf -> raise (Invalid_argument "insert");;

val balance : color * ’a * ’a rbtree * ’a rbtree -> ’a rbtree = <fun>
val insert : ’a -> ’a rbtree -> ’a rbtree = <fun>

Note the use of nested patterns in the balance function. The balance function takes a 4-tuple,
with a color, two btrees, and an element, and it splits the analysis into five cases: four of the cases
are for the situation where invariant 2 needs to be re-established because Red nodes are nested, and
the final case is the case where the tree does not need rebalancing.

Since the longest path from the root is at most twice as long as the shortest path, the depth of
the tree is O(log n). The balance function takes O(1) (constant) time. This means that the insert
and mem functions each take time O(log n).

let empty = Leaf;;
val empty : ’a rbtree = Leaf
let rec set_of_list = function

[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a rbtree = <fun>
let s = set_of_list [3; 9; 5; 7; 11];;
val s : int rbtree =

Node (Black, 7, Node (Black, 5, Node (Red, 3, Leaf, Leaf), Leaf),
Node (Black, 11, Node (Red, 9, Leaf, Leaf), Leaf))

mem 5 s;;
- : bool = true
mem 6 s;;
- : bool = false

6.6. OPEN UNION TYPES 49

6.6 Open union types

OCaml defines a second kind of union type where the type is open—that is, other definitions may add
more cases to the type definition. The syntax is similar to the exact definition discussed previously,
but the type but the constructor names are prefixed with a backquote (‘) symbol, and the type
definition is enclosed in [> . . .] brackets.1

For example, let build an extensible version of the numbers from the first example in this chapter.
Initially, we might define an add function for ‘Integer values.

let string_of_number1 n =
match n with

‘Integer i -> string_of_int i
| _ -> raise (Invalid_argument "unknown number");;

val string_of_number1 : [> ‘Integer of int] -> string = <fun>
string_of_number1 (‘Integer 17);;
- : string = "17"

The type [> ‘Integer of int] specifies that the function takes an argument having an open
union type, where one of the constructors is ‘Integer (with a value of type int).

Later, we might want to define a function that includes a constructor ‘Real for floating-point
values. We can extend the definition as follows.

let string_of_number2 n =
match n with

‘Real x -> string_of_float x
| _ -> string_of_number1 n;;

val string_of_number2 : [> ‘Integer of int | ‘Real of float] -> string =
<fun>

If passed a floating-point number with the ‘Real constructor, the string is created with
string_of_float function. Otherwise, the original function string_of_number1 is used.

The type [> ‘Integer of int | ‘Real of float] specifies that the function takes an argu-
ment in an open union type, and handles the constructors ‘Integer with a value of type int, and
‘Real with a value of type float. Unlike the exact union, the constructors may still be used with
expressions of other types. However, application to a value of the wrong type remains disallowed.

let n = ‘Real 1;;
val n : [> ‘Real of int] = ‘Real 1
string_of_number2 n;;
Characters 18-19:

string_of_number2 n;;
^

This expression has type [> ‘Real of int] but is here used with type
[> ‘Integer of int | ‘Real of float]

Types for tag ‘Real are incompatible

1As of OCaml 3.08.0, the language does not allow open union types in type definitions.

50 CHAPTER 6. UNIONS

6.7 Some common built-in unions

A few of the types we have already seen are unions. The built-in Boolean type bool is defined as a
union. Normally, the constructor names in a union must be capitalized. OCaml defines an exception
in this case by treating true and false as capitalized identifiers.

type bool =
true

| false
type bool = | true | false

The list type is similar, having the following effective definition. However, the ’a list type is
primitive in this case because [] is not considered a legal constructor name.

type ’a list =
[]

| :: of ’a * ’a list;;

Although it is periodically suggested on the OCaml mailing list, OCaml does not have a NIL
value that can be assigned to a variable of any type. Instead, the built-in ’a option type is used.

type ’a option =
None

| Some of ’a;;
type ’a option = | None | Some of ’a

The None case is intended to represent a NIL value, while the Some case handles non-NIL values.

Chapter 7

Exceptions

Exceptions are used in OCaml as a control mechanism, either to signal errors, or to control
the flow of execution. When an exception is raised, the current execution is aborted, and control
is thrown to the most recently entered active exception handler, which may choose to handle the
exception, or pass it through to the next exception handler.

Exceptions were designed as a more elegant alternative to explicit error handling in more tradi-
tional languages. In Unix/C, for example, most system calls return -1 on failure, and 0 on success.
System code tends to be cluttered with explicit error handling code that obscures the intended
operation of the code. In the OCaml Unix module, the system call stubs raise an exception on
failure, allowing the use of a single error handler for a block of code. In some ways, this is like the
setjmp/longjmp interface in C, but OCaml exceptions are safe.

To see how this works, consider the List.assoc function, which is defined as follows.

51

52 CHAPTER 7. EXCEPTIONS

let rec assoc key = function
(k, v) :: l ->

if k = key then
v

else
assoc key l

| [] ->
raise Not_found;;

val assoc : ’a -> (’a * ’b) list -> ’b = <fun>
let l = [1, "Hello"; 2, "World"];;
val l : (int * string) list = [1, "Hello"; 2, "World"]
assoc 2 l;;
- : string = "World"
assoc 3 l;;
Uncaught exception: Not_found
"Hello" ^ assoc 2 l;;
- : string = "HelloWorld"
"Hello" ^ assoc 3 l;;
Uncaught exception: Not_found

In the first case, assoc 2 l, the key is found in the list and its value is returned. In the second
case, assoc 3 l, the key 3 does not exist in the list, and the exception Not_found is raised. There
is no explicit exception handler, and the toploop default handler is invoked.

Exceptions are declared with the exception keyword, and their syntax has the same form as a
constructor declaration in a union type. Exceptions are raised with the raise function.

exception Abort of int * string;;
exception Abort of int * string
raise (Abort (1, "GNU is not Unix"));;
Uncaught exception: Abort(1, "GNU is not Unix")

Exception handlers have the same form as a match pattern match, using the try keyword. The
syntax is as follows:

try e with
p 1 -> e 1

| p 2 -> e 2
...

| p n -> e n

First, e is evaluated. If it does not raise an exception, its value is returned as the result of the
try statement. Otherwise, if an exception is raised during evaluation of e, the exception is matched
against the patterns p1, . . . , pn. If the first pattern the exception matches is pi, the expression ei is
evaluated and returned as the result. Otherwise, if no pattern matches, the exception is propagated
to the next exception handler.

53

try "Hello" ^ assoc 2 l with
Abort (i, s) -> s

| Not_found -> "Not_found";;
- : string = "HelloWorld"
try "Hello" ^ assoc 3 l with

Abort (i, s) -> s
| Not_found -> "Not_found";;

- : string = "Not_found"
try "Hello" ^ assoc 3 l with

Abort (i, s) -> s;;
Uncaught exception: Not_found

Exceptions are also used to manage control flow. For example, consider the binary trees in the
previous chapter.

type ’a btree =
Node of ’a btree * ’a * ’a btree

| Leaf;;
type ’a btree = | Node of ’a btree * ’a * ’a btree | Leaf

Suppose we wish to build a replace function that replaces a value in the set. The expression
replace x y s should replace value x with y in tree s, or raise the exception Not_found if the value
does not exist.

let rec replace x y = function
Leaf -> raise Not_found

| Node (left, z, right) ->
let left, mod_left =

try replace x y left, true with
Not_found -> left, false

in
let right, mod_right =

try replace x y right, true with
Not_found -> right, false

in
if z = x then

Node (left, y, right)
else if mod_left || mod_right then

Node (left, x, right)
else

raise Not_found;;
val replace : ’a -> ’a -> ’a btree -> ’a btree = <fun>

In this function, the left and right subtrees are recursively modified. The mod left and mod right
flags are set iff the corresponding branches were modified. If neither branch is modified, the
Not_found exception is raised.

54 CHAPTER 7. EXCEPTIONS

Chapter 8

Records, Arrays, and Side-Effects

In this chapter we discuss the remaining data types, all of which allow side-effects. A record can
be viewed as a tuple with labeled fields. An array is a fixed-size vector of items with constant time
access to each element. There are operations to modify some of the fields in a record, and any of
the elements in an array.

8.1 Records

A record is a labeled collection of values of arbitrary types. The syntax for a record type is a set
of field type definitions surrounded by braces, and separated by semicolons. Fields are declared
as label : type, where the label is an identifier that must begin with a lowercase letter or an
underscore. For example, the following record redefines the database entry from Chapter 5.2.

type db_entry =
{ name : string;

height : float;
phone : string;
salary : float

};;
type db_entry = { name: string; height: float;

phone: string; salary: float }

The syntax for a value is similar to the type declaration, but the fields are defined as
label = expr. Here is an example database entry.

55

56 CHAPTER 8. RECORDS, ARRAYS, AND SIDE-EFFECTS

let jason =
{ name = "Jason";

height = 6.25;
phone = "626-395-6568";
salary = 50.0

};;
val jason : db_entry =

{name="Jason"; height=6.25;
phone="626-395-6568"; salary=50}

There are two ways to access the fields in a record. The projection operation r.l returns the
field labeled l in record r.

jason.height;;
- : float = 6.25
jason.phone;;
- : string = "626-395-6568"

Pattern matching can also be used to access the fields of a record. The syntax for a pattern is
like a record value, but the fields contain a label and a pattern label = patt. Not all of the fields
have to be included. Note that the binding occurrences of the variables n and h occur to the right
of the equality symbol in their fields.

let { name = n; height = h } = jason;;
val n : string = "Jason"
val h : float = 6.25

There is a functional update operation that produces a copy of a record with new values for the
specified fields. The syntax for functional update uses the with keyword in a record definition.

let dave = { jason with name = "Dave"; height = 5.9 };;
val dave : db_entry =

{name="Dave"; height=5.9; phone="626-395-6568"; salary=50}
jason;;
- : db_entry = {name="Jason"; height=6.25;

phone="626-395-6568"; salary=50}

8.1.1 Imperative record updates

Record fields can also be modified by assignment, but only if the record field is declared as mutable.
The syntax for a mutable field uses the mutable keyword before the field label. For example, if we
wanted to allow salaries to be modified, we would re-declare the record entry as follows.

8.1. RECORDS 57

type db_entry =
{ name : string;

height : float;
phone : string;
mutable salary : float

};;
type db_entry =

{ name: string;
height: float;
phone: string;
mutable salary: float }

let jason =
{ name = "Jason";

height = 6.25;
phone = "626-395-6568";
salary = 50.0

};;
val jason : db_entry =

{name="Jason"; height=6.25; phone="626-395-6568"; salary=50}

The syntax for a field update is r.label <- expr. For example, if we want to give jason a
raise, we would use the following statement.

jason.salary <- 150.0;;
- : unit = ()
jason;;
- : db_entry = {name="Jason"; height=6.25;

phone="626-395-6568"; salary=150}

Note that the assignment statement itself returns the canonical unit value (). That is, it doesn’t
return a useful value, unlike the functional update. A functional update creates a completely new
copy of a record; assignments to the copies will be independent.

let dave = { jason with name = "Dave" };;
val dave : db_entry =

{name="Dave"; height=6.25; phone="626-395-6568"; salary=150}
dave.salary <- 180.0;;
- : unit = ()
dave;;
- : db_entry = {name="Dave"; height=6.25;

phone="626-395-6568"; salary=180}
jason;;
- : db_entry = {name="Jason"; height=6.25;

phone="626-395-6568"; salary=150}

8.1.2 Field label namespace

One important point: the namespace for toplevel record field labels is flat. This is important if you
intend to declare records with the same field names. If you do, the original labels will be lost! For

58 CHAPTER 8. RECORDS, ARRAYS, AND SIDE-EFFECTS

example, consider the following sequence.

type rec1 = { name : string; height : float };;
type rec1 = { name: string; height: float }

let jason = { name = "Jason"; height = 6.25 };;
val jason : rec1 = {name="Jason"; height=6.25}

type rec2 = { name : string; phone : string };;
type rec2 = { name: string; phone: string }

let dave = { name = "Dave"; phone = "626-395-6568" };;
val dave : rec2 = {name="Dave"; phone="626-395-6568"}

jason.name;;
Characters 0-5:
This expression has type rec1 but is here used with type rec2

dave.name;;
- : string = "Dave"

let bob = { name = "Bob"; height = 5.75 };;
Characters 10-41:
The label height belongs to the type rec1
but is here mixed with labels of type rec2

In this case, the name field was redefined. At this point, the original rec1.name label is lost,
making it impossible to access the name field in a value of type rec1, and impossible to construct
new values of type rec1. It is, however, permissible to use the same label names in separate files,
as we will see in Chapter 11.

8.2 References

Variables are never mutable. However, reference cells are common enough in OCaml programs that
a special form is defined just for this case. Reference cells are created with the ref function.

let i = ref 1;;
val i : int ref = {contents=1}

The built-in type ’a ref is defined using a regular record definition; the normal operations can
be used on this record.

type ’a ref = { mutable contents : ’a }

Dereferencing uses the ! operator, and assignment uses the := infix operator.

8.2. REFERENCES 59

!i;;
- : int = 1;;
i := 17;;
- : unit = ()
!i;;
- : int = 17

Don’t get confused with the ! operator in C here. The following code can be confusing.

let flag = ref true;;
val flag : bool ref = {contents=true}
if !flag then 1 else 2;;
- : int = 1

You may be tempted to read if !flag then ... as testing if the flag is false. This is not the
case; the ! operator is more like the * operator in C.

8.2.1 Value restriction

As we mentioned in Section 5.1.1, mutability and side-effects interact with type inference. For
example, consider a “one-shot” function that saves a value on its first call, and returns that value
on all future calls. This function is not properly polymorphic because it contains a mutable field.
We can illustrate this using a single variable.

let x = ref None;;
val x : ’_a option ref = {contents=None}
let one_shot y =

match !x with
None ->

x := Some y;
y

| Some z ->
z;;

val one_shot : ’_a -> ’_a = <fun>
one_shot 1;;
- : int = 1
one_shot;;
val one_shot : int -> int = <fun>
one_shot 2;;
- : int = 1
one_shot "Hello";;
Characters 9-16:
This expression has type string but is here used with type int

The value restriction requires that polymorphism be restricted to values. Values include func-
tions, constants, constructors with fields that are values, and immutable records with fields that are
values. A function application is not a value, and a record with mutable fields is not a value. By this
definition, the x and one shot variables cannot be polymorphic, as the type constants ’_a indicate.

60 CHAPTER 8. RECORDS, ARRAYS, AND SIDE-EFFECTS

8.3 Arrays and strings

Arrays are fixed-size vectors of values. All of the values must have the same type. The fields in the
array can be accessed and modified in constant time. Arrays can be created with the [|e1; . . . ; en|]
syntax, which creates an array of length n initialized with the values computed from the expressions
e1, . . . , en.

let a = [|1; 3; 5; 7|];;
val a : int array = [|1; 3; 5; 7|]

Fields can be accessed with the a.(i) construction. Array indices start from 0. Arrays are
bounds-checked.

a.(0);;
- : int = 1
a.(1);;
- : int = 3
a.(5);;
Uncaught exception: Invalid_argument("Array.get")

Fields are updated with the a.(i) <- e assignment statement.

a.(2) <- 9;;
- : unit = ()
a;;
- : int array = [|1; 3; 9; 7|]

The Array library module defines additional functions on arrays. Arrays of arbitrary length can
be created with the Array.create function, which requires a length and initializer argument. The
Array.length function returns the number of elements in the array.

let a = Array.create 10 1;;
val a : int array = [|1; 1; 1; 1; 1; 1; 1; 1; 1; 1|]
Array.length a;;
- : int = 10

The Array.blit function can be used to copy elements destructively from one array to another.
The blit function requires five arguments: the source array, a starting offset into the array, the
destination array, a starting offset into the destination array, and the number of elements to copy.

Array.blit [| 3; 4; 5; 6 |] 1 a 3 2;;
- : unit = ()
a;;
- : int array = [|1; 1; 1; 4; 5; 1; 1; 1; 1; 1|]

In OCaml, strings are a lot like packed arrays of characters. The access and update operations
use the syntax s.[i] and s.[i] <- c.

8.4. SEQUENTIAL EXECUTION AND LOOPING 61

let s = "Jason";;
val s : string = "Jason"
s.[2];;
- : char = ’s’
s.[3] <- ’y’;;
- : unit = ()
s;;
- : string = "Jasyn"

The String module defines additional functions, including the String.length and String.blit
functions that parallel the corresponding Array operations. The String.create function does not
require an initializer. It creates a string with arbitrary contents.

String.create 10;;
- : string = "\000\011\000\000,\200\027@\000\000"
String.create 10;;
- : string = "\196\181\027@\001\000\000\000\000\000"

8.4 Sequential execution and looping

Sequential execution is not useful in a functional language—why compute a value and discard it? In
an imperative language, including a language like OCaml, sequential execution is used to compute
by side-effect.

Sequential execution is defined using the semicolon operator. The expression e1; e2 evaluates e1,
discards the result (e1 probably has a side-effect), and evaluates e2. Note that the semicolon is a
separator (as in Pascal), not a terminator (as in C). The compiler produces a warning if expression
e1 does not have type unit. As usual, heed these warnings! The ignore : ’a -> unit function
can be used if you really want to discard a non-unit value.

There are two kinds of loops in OCaml, a for loop, and a while loop. The while loop is simpler;
we’ll start there.

8.4.1 while loops

The while loop has the syntax while e1 do e2 done. The expression e1 must have type bool.
When a while loop is evaluated, the expression e1 is evaluated first. If it is false, the while loop
terminates. Otherwise, e2 is evaluated, and the loop is evaluated again.

Here is an example to check if a value x is in an array a.

62 CHAPTER 8. RECORDS, ARRAYS, AND SIDE-EFFECTS

let array_mem x a =
let len = Array.length a in
let flag = ref false in
let i = ref 0 in

while !flag = false && !i < len do
if a.(!i) = x then

flag := true;
i := !i + 1

done;
!flag;;

val array_mem : ’a -> ’a array -> bool = <fun>
array_mem 1 [| 3; 5; 1; 6|];;
- : bool = true
array_mem 7 [| 3; 5; 1; 6|];;
- : bool = false

8.4.2 for loop

The for loop iterates over a finite range of integers. There are two forms, one to count up, and one
to count down. The syntax of these two operations is as follows.

for v = e1 to e2 do e3 done
for v = e1 downto e2 do e3 done

The for loops first evaluate e1 and e2, which must have type int. The to form evaluates the
body e3 for values of v counting up from e1 to e2, and the downto form evaluates the body for values
counting down from e1 to e2. Note that the final value e2 is included in the evaluation.

The following code is a simpler expression for computing membership in an array (although it is
somewhat less efficient).

let array_mem x a =
let flag = ref false in

for i = 0 to Array.length a - 1 do
if a.(i) = x then

flag := true
done;
!flag;;

val array_mem : ’a -> ’a array -> bool = <fun>
array_mem 1 [| 3; 5; 1; 6|];;
- : bool = true
array_mem 7 [| 3; 5; 1; 6|];;
- : bool = false

Chapter 9

Input and Output

The I/O library in OCaml is fairly expressive, including a Unix library that implements most
of the portable Unix system calls. In this chapter, we’ll cover many of the standard built-in I/O
functions.

The I/O library uses two data types: the in_channel is the type of I/O channels from which
characters can be read, and the out_channel is an I/O channel to which characters can be written.
I/O channels may represent files, communication channels, or some other device; the exact operation
depends on the context.

At program startup, there are three channels open, corresponding to the standard file descriptors
in Unix.

val stdin : in_channel
val stdout : out_channel
val stderr : out_channel

9.1 File opening and closing

There are two functions to open an output file: the open_out function opens a file for writing
text data, and the open_out_bin opens a file for writing binary data. These two functions are
identical on a Unix system. On a Macintosh or Windows system, the open_out function performs
line termination translation (why do all these systems use different line terminators?), while the
open_out_bin function writes the data exactly as written. These functions raise the Sys_error
exception if the file can’t be opened; otherwise they return an out_channel.

A file can be opened for reading with the functions open_in and open_in_bin.
val open_out : string -> out_channel
val open_out_bin : string -> out_channel
val open_in : string -> in_channel
val open_in_bin : string -> in_channel

The open_out_gen and open_in_gen functions can be used to perform more sophisticated file
opening. The function requires an argument of type open_flag that describes exactly how to open
the file.

63

64 CHAPTER 9. INPUT AND OUTPUT

type open_flag =
Open_rdonly | Open_wronly | Open_append

| Open_creat | Open_trunc | Open_excl
| Open_binary | Open_text | Open_nonblock

These opening modes have the following interpretation.

Open rdonly open for reading

Open wronly open for writing

Open append open for appending

Open creat create the file if it does not exist

Open trunc empty the file if it already exists

Open excl fail if the file already exists

Open binary open in binary mode (no conversion)

Open text open in text mode (may perform conversions)

Open nonblock open in non-blocking mode

The open in gen and open out gen functions have types

val open_in_gen : open_flag list -> int -> string -> in_channel.
val open_out_gen : open_flag list -> int -> string -> out_channel.

The open_flag list describe how to open the file, the int argument describes the Unix mode to
apply to the file if the file is created, and the string argument is the name of the file.

The closing operations close_out and close_in close the channels. If you forget to close a file,
the garbage collector will eventually close it for you. However, it is good practice to close the channel
manually when you are done with it.

val close_out : out_channel -> unit
val close_in : in_channel -> unit

9.2 Writing and reading values on a channel

There are several functions for writing values to an out_channel. The output_char writes a single
character to the channel, and the output_string writes all the characters in a string to the channel.
The output function can be used to write part of a string to the channel; the int arguments are
the offset into the string, and the length of the substring.

val output_char : out_channel -> char -> unit
val output_string : out_channel -> string -> unit
val output : out_channel -> string -> int -> int -> unit

9.3. CHANNEL MANIPULATION 65

The input functions are slightly different. The input_char function reads a single character, and
the input_line function reads an entire line, discarding the line terminator. The input functions
raise the exception End_of_file if the end of the file is reached before the entire value could be
read.

val input_char : in_channel -> char
val input_line : in_channel -> string
val input : in_channel -> string -> int -> int -> int

There are also several functions for passing arbitrary OCaml values on a channel opened in binary
mode. The format of these values is implementation specific, but it is portable across all standard
implementations of OCaml. The output_byte and input_byte functions write/read a single byte
value. The output_binary_int and input binary int functions write/read a single integer value.

The output_value and input_value functions write/read arbitrary OCaml values. These func-
tions are unsafe! Note that the input_value function returns a value of arbitrary type ’a. OCaml
makes no effort to check the type of the value read with input_value against the type of the value
that was written with output_value. If these differ, the compiler will not know, and most likely
your program will generate a segmentation fault.

val output_byte : out_channel -> int -> unit
val output_binary_int : out_channel -> int -> unit
val output_value : out_channel -> ’a -> unit
val input_byte : in_channel -> int
val input_binary_int : in_channel -> int
val input_value : in_channel -> ’a

9.3 Channel manipulation

If the channel is a normal file, there are several functions that can modify the position in the file.
The seek_out and seek_in function change the file position. The pos_out and pos_in function
return the current position in the file. The out_channel_length and in_channel_length return
the total number of characters in the file.

val seek_out : out_channel -> int -> unit
val pos_out : out_channel -> int
val out_channel_length : out_channel -> int
val seek_in : in_channel -> int -> unit
val pos_in : in_channel -> int
val in_channel_length : in_channel -> int

If a file may contain both text and binary values, or if the mode of the the file is not know when
it is opened, the set_binary_mode_out and set_binary_mode_in functions can be used to change
the file mode.

val set_binary_mode_out : out_channel -> bool -> unit
val set_binary_mode_in : in_channel -> bool -> unit

The channels perform buffered I/O. By default, the characters on an out_channel are not all
written until the file is closed. To force the writing on the buffer, use the flush function.

val flush : out_channel -> unit

66 CHAPTER 9. INPUT AND OUTPUT

9.4 Printf

The regular functions for I/O can be somewhat awkward. OCaml also implements a printf function
similar to the printf in Unix/C. These functions are defined in the library module Printf. The
general form is given by fprintf.

val fprintf: out_channel -> (’a, out_channel, unit) format -> ’a

Don’t be worried if you don’t understand this type definition. The format type is a built-in
type intended to match a format string. The normal usage uses a format string. For example, the
following statement will print a line containing an integer i and a string s.

fprintf stdout "Number = %d, String = %s\n" i s

The strange typing of this function is because OCaml checks the type of the format string and
the arguments. For example, OCaml analyzes the format string to tell that the following fprintf
function should take a float, int, and string argument.

let f = fprintf stdout "Float = %g, Int = %d, String = %s\n";;
Float = val f : float -> int -> string -> unit = <fun>

The format specification corresponds roughly to the C specification. Each format argument takes
a width and length specifier that corresponds to the C specification.

d or i convert an integer argument to signed decimal

u convert an integer argument to unsigned decimal

x convert an integer argument to unsigned hexadecimal, using lowercase letters.

X convert an integer argument to unsigned hexadecimal, using uppercase letters

s insert a string argument

c insert a character argument

f convert a floating-point argument to decimal notation, in the style dddd.ddd

e or E convert a floating-point argument to decimal notation, in the style d.ddd e+-dd
(mantissa and exponent)

g or G convert a floating-point argument to decimal notation, in style f or e, E
(whichever is more compact)

b convert a Boolean argument to the string true or false

a user-defined printer. It takes two arguments; it applies the first one to the current
output channel and to the second argument. The first argument must therefore
have type out_channel -> ’b -> unit and the second one has type ’b. The
output produced by the function is therefore inserted into the output of fprintf
at the current point.

t same as %a, but takes only one argument (with type out_channel -> unit) and
applies it to the current out_channel.

% takes no argument and output one % character.

9.5. STRING BUFFERS 67

The Printf module also provides several additional functions for printing on the standard chan-
nels. The printf function prints in the channel stdout, and eprintf prints on stderr.

let printf = fprintf stdout
let eprintf = fprintf stderr

The sprintf function has the same format specification as printf, but it prints the output to
a string and returns the result.

val sprintf: (’a, unit, string) format -> ’a

9.5 String buffers

The Buffer library module provides string buffers. The string buffers can be significantly more
efficient that using the native string operations. String buffers have type Buffer.t. The type is
abstract, meaning that the implementation of the buffer is not specified. Buffers can be created with
the Buffer.create function.

type t (* Abstract type of string buffers *)
val create : unit -> t

There are several functions to examine the state of the buffer. The contents function returns
the current contents of the buffer as a string. The length function returns the total number of
characters stored in the buffer. The clear and reset function remove the buffer contents; the
difference is that reset also deallocates the internal storage used to save the current contents.

val contents : t -> string
val length : t -> int
val clear : t -> unit
val reset : t -> unit

There are also several functions to add values to the buffer. The add_char function appends a
character to the buffer contents. The add_string function appends a string to the contents; there
is also an add_substring function to append part of a string. The add_buffer function appends
the contents of another buffer, and the add_channel reads input off a channel and appends it to the
buffer.

val add_char : t -> char -> unit
val add_string : t -> string -> unit
val add_substring : t -> string -> int -> int -> unit
val add_buffer : t -> t -> unit
val add_channel : t -> in_channel -> int -> unit

The output_buffer function can be used to write the contents of the buffer to an out_channel.

val output_buffer : out_channel -> t -> unit

The Printf module also provides formatted output to a string buffer. The bprintf function
takes a printf-style format string, and formats output to a buffer.

val bprintf: Buffer.t -> (’a, Buffer.t, unit) format -> ’a

68 CHAPTER 9. INPUT AND OUTPUT

Chapter 10

Files, Compilation Units, and
Programs

One of the principles of modern programming is data hiding using encapsulation. An abstract
data type (ADT) is a program unit that defines a data type and functions (also called methods) that
operate on that data type. An ADT has two parts: a signature (or interface) that declares the ac-
cessible data structures and methods, and an implementation that defines concrete implementations
of the objects declared in the signature. The implementation is hidden: all access to the ADT must
be through the methods defined in the signature.

There are several ideas behind data hiding using ADTs. First, by separating a program into
distinct program units (called modules), the program may be easier to understand. Ideally, each
module encapsulates a single concept needed to address the problem at hand.

Second, by hiding the implementation of a program module, dependencies between program
modules become tightly controlled. Since all interactions must be through a module’s methods, the
implementation of the module can be changed without affecting the correctness of the program (as
long as the behavior of the methods is preserved).

OCaml provides a module system that makes it easy to use the concepts of encapsulation and
data hiding. In fact, in OCaml every program file acts as an abstract module, called a compilation
unit in the OCaml terminology. A signature for the file can be defined in a .mli file with the same
name. If there is no .mli file, the default signature includes all type and functions defined in the
file.

10.1 Signatures

In OCaml, a signature contains type definitions and function declarations for the visible types and
methods in the module. To see how this works, let’s revisit the binary trees we defined in Chapter
6. A binary tree defines a simple, distinct concept, and it is an ideal candidate for encapsulation.

A module signature usually contains three parts:

69

70 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

1. Data types used by the module.

2. Exceptions used by the module.

3. Method type declarations for all the externally visible methods defined by the module.

For the binary tree, the signature will need to include a type for binary trees, and type dec-
larations for the methods for operating on the tree. First, we need to choose a filename for the
compilation unit. The filename should reflect the function of the data structure defined by the
module. For our purposes, the binary tree is a data structure used for defining a finite set of values,
and an appropriate filename for the signature would be fset.mli.

The data structure defines a type for sets, and three methods: an empty set, a mem membership
function, and an insert insertion function. The complete signature is defined below; we’ll discuss
each of the parts in the following sections.

(* The abstract type of sets *)
type ’a t

(* Empty set *)
val empty : ’a t

(* Membership function *)
val mem : ’a -> ’a t -> bool

(* Insertion is functional *)
val insert : ’a -> ’a t -> ’a t

10.1.1 Type declarations

Type declarations in a signature can be either transparent or abstract. An abstract type declaration
declares a type without giving the type definition; a transparent type declaration includes the type
definition.

For the binary tree, the declaration type ’a t is abstract because the type definition is left
unspecified. In this case, the type definition won’t be visible to other program units; they will be
forced to use the methods if they want to operate on the data type. Note that the abstract type
definition is polymorphic: it is parameterized by the type variable ’a.

Alternatively, we could have chosen a transparent definition that would make the type visible to
other program modules. For example, if we intend to use the unbalanced tree representation, we
might include the following type declaration in the signature.

type ’a t =
Node of ’a t * ’a * ’a t

| Leaf

By doing this, we would make the binary tree structure visible to other program components;
they can now use the type definition to access the binary tree directly. This would be undesirable
for several reasons. First, we may want to change the representation later (by using red-black trees
for example). If we did so, we would have to find and modify all the other modules that accessed
the unbalanced structure directly. Second, we may be assuming that there are some invariants on

10.2. IMPLEMENTATIONS 71

values in the data structure. For example, we may be assuming that the nodes in the binary tree are
ordered. If the type definition is visible, it would be possible for other program modules to construct
trees that violate the invariant, leading to errors that may be difficult to find.

10.1.2 Method declarations

The method declarations include all the functions and values that are visible to other program
modules. For the Fset module, the visible methods are the empty, mem, and insert methods. The
signature gives only the type declarations for these methods.

It should be noted that only these methods will be visible to other program modules. If we define
helper functions in the implementation, these functions will be private to the implementation and
inaccessible to other program modules.

10.2 Implementations

The module implementation is defined in a file with the same base name as the signature file. The
implementation contains parts that correspond to each of the parts in the signature.

1. Data types used by the module.

2. Exceptions used by the module.

3. Method definitions.

The definitions do not have to occur in the same order as declarations in the signature, but there
must be a definition for every item in the signature.

10.2.1 Type definitions

In the implementation, definitions must be given for each of the types in the signature. The imple-
mentation may also include other types. These types will be private to the implementation; they
will not be visible outside the implementation.

For the Fset module, let’s use the red-black implementation of balanced binary trees. We need
two type definitions: the definition of the Red and Black labels, and the tree definition itself.

type color =
Red

| Black

type ’a t =
Node of color * ’a t * ’a * ’a t

| Leaf

The color type is a private type, the ’a t type gives the type definition for the abstract type
declaration type ’a t in the signature.

72 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

10.2.2 Method definitions

In the implementation we need to implement each of the methods declared in the signature. The
empty method is easy: the Leaf node is used to implement the empty set.

let empty = Leaf

The mem method performs a search over the binary tree. The nodes in the tree are ordered, and
we can use a binary search.

let rec mem x = function
Leaf -> false

| Node (_, a, y, b) ->
if x < y then mem x a
else if x > y then mem x b
else true

The implement the insert method we need two methods: one is the actual insert function,
and another is the helper function balance that keeps the tree balanced. We can include both
functions in the implementation. The balance function will be private, since it is not declared in
the signature.

let balance = function
Black, Node (Red, Node (Red, a, x, b), y, c), z, d ->

Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, Node (Red, a, x, Node (Red, b, y, c)), z, d ->

Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, Node (Red, b, y, c), z, d) ->

Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, b, y, Node (Red, c, z, d)) ->

Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| a, b, c, d ->

Node (a, b, c, d)

let insert x s =
let rec ins = function

Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->

if x < y then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s

in
match ins s with (* guaranteed to be non-empty *)

Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert")

10.3. BUILDING A PROGRAM 73

10.3 Building a program

Once a compilation unit is defined, the types and methods can be used in other files by prefixing
the names of the methods with the capitalized file name. For example, the empty set can be used in
another file with the name Fset.empty.

Let’s define another module to test the Fset implementation. This will be a simple program with
an input loop where we can type in a string. If the string is not in the set, it is added; otherwise,
the loop will print out a message that the string is already added. To implement this program, we
need to add another file; we’ll call it .

The Test compilation unit has no externally visible types or methods. By default, the test.mli
file should be empty. The Test implementation should contain a function that recursively:

1. prints a prompt

2. reads a line from stdin

3. checks if the line is already in the set

4. if it is, then print a message

5. repeat

We’ll implement this as a loop method.

let loop () =
let set = ref Fset.empty in

try
while true do

output_string stdout "set> ";
flush stdout;
let line = input_line stdin in

if Fset.mem line !set then
Lm_printf.printf "%s is already in the set\n" line

else
Lm_printf.printf "%s added to the set\n" line;

set := Fset.insert line !set
done

with
End_of_file ->

()

let _ = loop ()

There are a few things to note. First, we need to catch the End_of_file exception that is raised
when the end of the input file is reached. In this case, we exit without comment. To run the loop,
we include the line let _ = loop (). The let _ = ... may seem strange: it tells the OCaml
parser that this is a new top level expression. Another way to accomplish this is by adding the ;;
terminator after the last () expression in the loop function.

74 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

10.4 Compiling the program

Once the files for the program are defined, the next step is to compile them using ocamlc. The usage
of ocamlc is much like cc. Normally, the files are compiled separately and linked into an executable.
Signatures must be compiled first, followed by the implementations.

For the fset module, the signature can be compiled with the following command.

% ocamlc -c fset.mli

If there are no errors in the signature, this step produces a file called fset.cmi.
The implementations are compiled with the following command.

% ocamlc -c fset.ml
% ocamlc -c test.ml

If this step is successful, the compiler produces the files fset.cmo and test.cmo.
The modules can now be linked into a complete program using the ocamlc linker. The command

is as follows.

% ocamlc -o test fset.cmo test.cmo

The linker requires all of the .cmo files to be included in the program. The order of these files is
important! Each module in the link line can refer only to the modules listed before it. If we reverse
the order of the modules on the link line, we will get an error.

% ocamlc -o test test.cmo fset.cmo
Error while linking test.cmo: Reference to undefined global ‘Fset’
Exit 2

Once the program is linked, we can run it.

% ./test
set> hello
hello added to the set
set> world
world added to the set
set> hello
hello is already in the set
set> x
x added to the set
set> world
world is already in the set

10.4.1 Where is the main function?

Unlike C programs, OCaml program do not have a “main” function. When an OCaml program
is evaluated, all the statements in the files in the program are evaluated in the order specified on
the link line. Program files contain type and method definitions. They can also contain arbitrary
expressions to be evaluated. The let = loop () statement in the file is an example: it evaluates
the loop function. Informally, this is the main loop; it is the last expression to be executed in the
program.

10.4. COMPILING THE PROGRAM 75

10.4.2 Some common errors

When a file is compiled, the compiler compares the implementation with the signature in the .cmi
file. If a definition does not match the signature, the compiler will print an error and refuse to
compile the file.

Type errors

For example, suppose we had reversed the order of arguments in the Fset.insert function so that
the set argument is first.

let insert s x =
...

When we compile the file, we get an error. The compiler prints the types of the mismatched
values, and exits with an error code.

% ocamlc -c fset.ml
The implementation fset.ml does not match the interface fset.cmi:
Values do not match:

val insert : ’a t -> ’a -> ’a t
is not included in

val insert : ’a -> ’a t -> ’a t
Exit 2

Missing definition errors

Another common error occurs when a method declared in the signature is not defined in the imple-
mentation. For example, suppose we had defined an add method rather than an insert method. In
this case, the compiler prints the name of the missing method, and exits with an error code.

% ocamlc -c fset.ml
The implementation fset.ml does not match the interface fset.cmi:
The field ‘insert’ is required but not provided
Exit 2

Type definition mismatch errors

Transparent type definitions in the signature can also cause an error if the type definition in the
implementation does not match. Suppose we were to export the definition for type ’a t. We need
to include exactly the same definition in the implementation. A correct fset.mli file would contain
the following definition.

type color

type ’a t =
Node of color * ’a t * ’a * ’a t

| Leaf

76 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

Note that we must include a type definition for color, since it is used in the definition of the set
type ’a t. The type definition for color may be transparent or abstract.

Now, suppose we reorder the constructors in the interface definition for ’a t by placing the Leaf
constructor first.

type color

type ’a t =
Leaf

| Node of color * ’a t * ’a * ’a t

When we compile the file, the compiler will produce an error with the mismatched types.

% ocamlc -c fset.mli
% ocamlc -c fset.ml
The implementation fset.ml does not match the interface fset.cmi:
Type declarations do not match:

type ’a t = | Node of color * ’a t * ’a * ’a t | Leaf
is not included in

type ’a t = | Leaf | Node of color * ’a t * ’a * ’a t
Exit 2

Compile dependency errors

The compiler will also produce errors if the compile state is inconsistent. Each time an interface is
compile, all the files that uses that interface must be recompiled. For example, suppose we update
the fset.mli file, and recompile it and the test.ml file (but we forget to recompile the fset.ml
file). The compiler produces the following error.

% ocamlc -c fset.mli
% ocamlc -c test.ml
% ocamlc -o test fset.cmo test.cmo
Files test.cmo and fset.cmo make inconsistent
assumptions over interface Fset
Exit 2

It takes a little work to detect the cause of the error. The compiler says that the files make
inconsistent assumptions for interface Fset. The interface is defined in the file fset.cmi, and so
this error message states that at least one of fset.ml or test.cmo needs to be recompiled. In
general, we don’t know which file is out of date, and the best solution is to recompile them all.

10.5 Using open to expose a namespace

Using the full name Module name.method name to refer to the methods in a module can get tedious.
The open Module name statement can be used to “open” a module interface, which will allow the
use of unqualified names for types, exceptions, and methods. For example, the test.ml module can
be somewhat simplified by using the open statements for the Lm_printf and Fset modules.

10.5. USING OPEN TO EXPOSE A NAMESPACE 77

let loop () =
let set = ref empty in

try
while true do

output_string stdout "set> ";
flush stdout;
let line = input_line stdin in

if mem line !set then
printf "%s is already in the set\n" line

else
printf "%s added to the set\n" line;

set := insert line !set
done

with
End_of_file ->

()

let _ = loop ()

Sometimes multiple opened modules will define the same name. In this case, the last module
with an open statement will determine the value of that symbol. Fully qualified names (of the form
Module name.name) may still be used even if the module has been opened. Fully qualified names
can be used to access values that may have been hidden by an open statement.

10.5.1 A note about open

Be careful with the use of open. In general, fully qualified names provide more information, speci-
fying not only the name of the value, but the name of the module where the value is defined. For
example, the Fset and List modules both define a mem function. In the Test module we just de-
fined, it may not be immediately obvious to a programmer that the mem symbol refers to Fset.mem,
not List.mem.

In general, you should use open statement sparingly. Also, as a matter of style, it is better
not to open most of the library modules, like the Array, List, and String modules, all of which
define methods (like create) with common names. Also, you should never open the Unix, Obj,
and Marshal modules! The functions in these modules are not completely portable, and the fully
qualified names identify all the places where portability may be a problem (for instance, the Unix
grep command can be used to find all the places where Unix functions are used).

The behavior of the open statement is not like an #include statement in C. An implementation
file mod.ml should not include an open Mod statement. One common source of errors is defining
a type in a .mli interface, then attempting to use open to “include” the definition in the .ml
implementation. This won’t work—the implementation must include an identical type definition.
True, this is an annoying feature of OCaml. But it preserves a simple semantics: the implementation
must provide a definition for each declaration in the signature.

78 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

10.6 Debugging a program

The ocamldebug program can be used to debug a program compiled with ocamlc. The ocamldebug
program is a little like the GNU gdb program; it allows breakpoints to be set. When a breakpoint
is reached, control is returned to the debugger so that program variables can be examined.

To use ocamldebug, the program must be compiled with the -g flag.

% ocamlc -c -g fset.mli
% ocamlc -c -g fset.ml
% ocamlc -c -g test.ml
% ocamlc -o test -g fset.cmo test.cmo

The debugger is invoked using by specifying the program to be debugged on the ocamldebug
command line.

% ocamldebug ./test
Objective Caml Debugger version 2.04

(ocd) help
List of commands :
cd complete pwd directory kill help quit run reverse step
backstep goto finish next start previous print display source
break delete set show info frame backtrace bt up down last
list load_printer install_printer remove_printer

(ocd)

There are several commands that can be used. The basic commands are run, step, next, break,
list, print, and goto.

run Start or continue execution of the program.

break @ module linenum Set a breakpoint on line linenum in module module.

list display the lines around the current execution point.

print expr Print the value of an expression. The expression must be a variable.

goto time Execution of the program is measured in time steps, starting from 0. Each
time a breakpoint is reached, the debugger will print the current time. The goto
command may be used to continue execution to a future time, or to a previous
timestep.

step Go forward one time step.

next If the current value to be executed is a function, evaluate the function, a return
control to the debugger when the function completes. Otherwise, step forward one
time step.

For debugging the test program, we need to know the line numbers. Let’s set a breakpoint in
the loop function, which starts in line 27 in the Test module. We’ll want to stop at the first line of
the function.

10.6. DEBUGGING A PROGRAM 79

(ocd) break @ Test 28
Loading program... done.
Breakpoint 1 at 24476 : file Test, line 28 column 4
(ocd) run
Time : 7 - pc : 24476 - module Test
Breakpoint : 1
28 <|b|>let set = ref Fset.empty in
(ocd) n
Time : 8 - pc : 24488 - module Test
29 <|b|>try
(ocd) p set
set : string Fset.t ref = {contents=Fset.Leaf}

Next, let’s set a breakpoint after the next input line is read and continue execution to that point.

(ocd) list
27 let loop () =
28 let set = ref Fset.empty in
29 <|b|>try
30 while true do
31 output_string stdout "set> ";
32 flush stdout;
33 let line = input_line stdin in
34 if Fset.mem line !set then
35 Lm_printf.printf "%s is already in the set\n" line
36 else
37 Lm_printf.printf "%s added to the set\n" line;
38 set := Fset.insert line !set
39 done
(ocd) break @ 34
Breakpoint 2 at 24600 : file Test, line 33 column 40
(ocd) run
set> hello
Time : 22 - pc : 24604 - module Test
Breakpoint : 2
34 <|b|>if Fset.mem line !set then
(ocd) p line
line : string = "hello"

When we run the program, the evaluation prompts us for an input line, and we can see the value
of the line in the line variable. Let’s continue and view the set after the line is added.

80 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

(ocd) n
Time : 24 - pc : 24628 - module Test
34 if Fset.mem line !set<|a|> then
(ocd) n
Time : 25 - pc : 24672 - module Test
37 <|b|>Lm_printf.printf "%s added to the set\n" line;
(ocd) n
Time : 135 - pc : 24700 - module Test
37 Lm_printf.printf "%s added to the set\n" line<|a|>;
(ocd) n
Time : 141 - pc : 24728 - module Test
38 set := Fset.insert line !set<|a|>
(ocd) n
Time : 142 - pc : 24508 - module Test
31 <|b|>output_string stdout "set> ";
(ocd) p set
set : string Fset.t ref =

{contents=Fset.Node (<abstr>, Fset.Leaf, "hello", Fset.Leaf)}
(ocd)

This value seems to be correct. Next, suppose we want to go back a descend into the Fset.mem
function. We can go back to time 22 (the time just before the Fset.mem function is called), and use
the step command to descend into the membership function.

(ocd) goto 22
set> hello
Time : 22 - pc : 24604 - module Test
Breakpoint : 7
34 <|b|>if Fset.mem line !set then
(ocd) s
Time : 23 - pc : 22860 - module Fset
39 Leaf -> <|b|>false
(ocd) s
Time : 24 - pc : 24628 - module Test
34 if Fset.mem line !set<|a|> then
(ocd)

Note that when we go back in time, the program prompts us again for an input line. This is
due to way time travel is implemented in ocamldebug. Periodically, the debugger takes a checkpoint
of the program (using the Unix fork() system call). When reverse time travel is requested, the
debugger restarts the program from the closest checkpoint before the time requested. In this case,
the checkpoint was taken sometime before the call to input_line, and the program resumption
requires another input value.

When we step into the Fset.mem function, we see that the membership is false (the set is the
Leaf empty value). We can continue from here, examining the remaining functions and variables.
You may wish to explore the other features of the debugger. Further documentation can be found
in the OCaml reference manual.

10.6. DEBUGGING A PROGRAM 81

82 CHAPTER 10. FILES, COMPILATION UNITS, AND PROGRAMS

Chapter 11

The OCaml Module System

The compilation units discussed in the Chapter 10 are not the only way to create modules.
OCaml provides a general module system where modules can be created explicitly using the module
keyword. There are three key parts in the module system: signatures, structures, and functors.

Module signatures correspond to the signatures defined in a .mli file, and module structures
correspond to the implementations defined in a .ml file. There is one major difference. Each
compilation unit has at most one signature, defined by the .mli file. The module system is more
general: a single signature can be used to specify multiple structures; and a structure can have
multiple signatures.

This ability to share signatures and structures can have important effects on code re-use. For
example, in Chapter 6, we introduced three implementations of finite sets (using unbalanced, ordered,
and balanced binary trees). All three of these implementations can be expressed as structures having
the same signature. Any of the three implementations can be used in a context that requires an
implementation of finite sets.

The ability to assign multiple signatures to a structure becomes useful in larger programs com-
posed of multiple components each spread over multiple files. The structures within a program
component may make their implementations visible to one another (like a “friend” declaration in
a C++ class, or a protected declaration for a Java method). Outside the program component, a
new signature may be assigned to hide the implementation details (making them private).

The OCaml module system also includes functors, or parameterized structures. A functor is a
function that computes a structure given a structure argument. Functors provide a simple way to
generalize the implementation of a structure.

In the following sections, we’ll describe the three different parts of the module system by devel-
oping the finite set example in the context of the module system.

11.1 Module signatures

A module signature is declared with a module type declaration.

module type Name = sig signature end

83

84 CHAPTER 11. THE OCAML MODULE SYSTEM

The name of the signature must begin with an uppercase letter. The signature can contain any
of the items that can occur in an interface .mli file, including any of the following.

• type declarations

• exception definitions

• method type declarations, using the val keyword

• open statements to open the namespace of another signature

• include statements that include the contents of another signature

• nested signature declarations

Signatures can be defined in an interface, implementation, or in the OCaml toploop. A signature
is like a type declaration—if a .mli file defines a signature, the same signature must also be defined
in the .ml file.

For the finite set example, the signature should include a type declaration for the set type, and
method declarations for the empty, mem, and insert methods. For this example, we’ll return to the
OCaml toploop, which will display the types of the modules we define.

module type FsetSig =
sig

type ’a t
val empty : ’a t
val mem : ’a -> ’a t -> bool
val insert : ’a -> ’a t -> ’a t

end;;
module type FsetSig =

sig
type ’a t
val empty : ’a t
val mem : ’a -> ’a t -> bool
val insert : ’a -> ’a t -> ’a t

end

The include statement can be used to create a new signature that extends an existing signature.
For example, suppose we would like to define a signature for finite sets that includes a delete function
to remove an element of a set. One way to be to re-type the entire signature for finite sets followed
by the delete declaration. The include statement performs this inclusion automatically.

11.2. MODULE STRUCTURES 85

module type FsetDSig =
sig

include Fset
val delete : ’a -> ’a t -> ’a t

end;;
module type FsetDSig =

sig
type ’a t
val empty : ’a t
val mem : ’a -> ’a t -> bool
val insert : ’a -> ’a t -> ’a t
val delete : ’a -> ’a t -> ’a t

end

11.2 Module structures

Module structures are defined with the module keyword.

module Name = struct implementation end

Once again, the module name must begin with an uppercase letter. The implementation is
exactly the same as the contents of a .ml file. It can include any of the following.

• type definitions

• exception definitions

• method definitions, using the let keyword

• open statements to open the namespace of another module

• include statements that include the contents of another module

• signature declarations

• nested structure definitions

Let’s try this with the balanced binary tree example (the complete definitions for the balance
and insert functions are given in Section 10.2.2).

86 CHAPTER 11. THE OCAML MODULE SYSTEM

module Fset =
struct

type color =
Red

| Black

type ’a t =
Node of color * ’a t * ’a * ’a t

| Leaf

let empty = Leaf

let rec mem x = function
Leaf -> false

| Node (_, a, y, b) ->
if x < y then mem x a
else if x > y then mem x b
else true

let balance = ...

let insert x s = ...
end;;

module Fset :
sig

type color = | Red | Black
and ’a t = | Node of color * ’a t * ’a * ’a t | Leaf
val empty : ’a t
val mem : ’a -> ’a t -> bool
val balance : color * ’a t * ’a * ’a t -> ’a t
val insert : ’a -> ’a t -> ’a t

end
Fset.empty;;
- : ’a Fset.t = Fset.Leaf
Fset.balance;;
- : Fset.color * ’a Fset.t * ’a * ’a Fset.t -> ’a Fset.t = <fun>

11.2.1 Assigning a signature

Note that the default signature assigned to the structure exposes all of the types and functions in
the structure, including the type definitions for the color and ’a t types, as well as the balance
function, which would normally be hidden. To assign a signature to a structure, we include a type
constraint using a : modifier of the following form.

module Name : SigName = struct implementation end

In the finite set example, we want to assign the FsetSig signature to the module.

11.3. FUNCTORS 87

module Fset : FsetSig =
struct

type color =
Red

| Black

type ’a t =
Node of color * ’a t * ’a * ’a t

| Leaf

let empty = Leaf
let rec mem x = ...
let balance = ...
let insert x s = ...

end;;
module Fset : FsetSig
Fset.empty;;
- : ’a Fset.t = <abstr>
Fset.balance;;
Characters 0-12:
Unbound value Fset.balance

When we assign this signature, the type definition for ’a t becomes abstract, and the balance
function is no longer visible outside the module definition.

11.3 Functors

One problem with the implementation of finite sets that we have been using is the use of the
built-in < comparison operation to compare values in the set. The definition of the < operator is
implementation-specific, and it may not always define the exact ordering that we want.

To fix this problem, we can define our own comparison function, but we will need to define a
separate finite set implementation for each different element type. For this purpose, we can use
functors. A functor is a function on modules; the function requires a module argument, and it
produces a module. Functors can be defined with the functor keyword, or with a more common
alternate syntax.

module Name = functor (ArgName : ArgSig) ->
struct implementation end

module Name (Arg : ArgSig) =
struct implementation end

For the finite set example, we’ll need to define an argument structure that includes a type elt of
elements, and a comparison function compare. We’ll have the compare function return one of three
kinds of values:

• a negative number if the first argument is smaller than the second,

88 CHAPTER 11. THE OCAML MODULE SYSTEM

• zero if the two arguments are equal,

• a positive number if the first argument is larger than the second.

module type EltSig =
sig

type elt
val compare : elt -> elt -> int

end

The finite set signature FsetSig must also be modified to used a specific element type elt. Note
that the set itself is no longer polymorphic, it is defined for a specific type of elements.

module type FsetSig =
sig

type elt
type t

val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t

end

Next, we redefine the set implementation as a functor. The implementation must be modified to
include a type definition for the elt type, and the mem and insert functions must be modified to
make use of the comparison function from Elt.

11.3. FUNCTORS 89

module MakeFset (Elt : EltSig) =
struct

type elt = Elt.elt
type color = ...
type t =

Node of color * t * elt * t
| Leaf

let empty = Leaf

let rec mem x = function
Leaf -> false

| Node (_, a, y, b) ->
let i = Elt.compare x y in

if i < 0 then mem x a
else if i > 0 then mem x b
else true

let balance = ...

let insert x s =
let rec ins = function

Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->

let i = Elt.compare x y in
if i < 0 then balance (color, ins a, y, b)
else if i > 0 then balance (color, a, y, ins b)
else s

in
match ins s with (* guaranteed to be non-empty *)

Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert")

end;;
module MakeFset :

functor(Elt : EltSig) ->
sig

type elt = Elt.elt
and color = | Red | Black
and t = | Node of color * t * elt * t | Leaf
val empty : t
val mem : Elt.elt -> t -> bool
val balance : color * t * elt * t -> t
val insert : elt -> t -> t

end

Note the return type. The argument type is right: the functor takes an argument module Elt
with signature EltSig. But the returned module makes the implementation fully visible. To fix this

90 CHAPTER 11. THE OCAML MODULE SYSTEM

problem, we need to add a type constraint using the : modifier.

module MakeFset (Elt : EltSig) : FsetSig =
struct

type elt = Elt.elt
type color = ...
type t = ...
let empty = ...
let rec mem x = ...
let balance = ...
let insert x s = ...

end;;
module MakeFset : functor(Elt : EltSig) -> FsetSig

11.3.1 Using a functor

To use the module produced by the functor, we need to apply it to a specific module implementation
the EltSig signature. Let’s define a comparison function for a finite set of integers. The comparison
function is straightforward.

module Int =
struct

type elt = int
let compare i j =

if i < j then
-1

else if i > j then
1

else (* i = j *)
0

end;;
module Int : sig type elt = int val compare : int -> int -> int end
Int.compare 3 5;;
- : int = -1

We must not give the Int module the signature EltSig. In the EltSig signature, the elt type is
abstract. Since there is no way to create a value of the abstract type elt, it would become impossible
to use the compare function, and the module would become useless.

module Int’ = (Int : EltSig);;
module Int’ : EltSig
Int’.compare 3 5;;
Characters 13-14:
This expression has type int but is here used with type Int’.elt

A functor is applied to an argument with the syntax Functor name (Arg name). To build a
finite set of integers, we apply the MakeFset functor to the Int module.

11.3. FUNCTORS 91

module IntSet = MakeFset (Int);;
module IntSet :

sig
type elt = MakeFset(Int).elt
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t

end
IntSet.empty;;
- : IntSet.t = <abstr>

Note the type definitions for elt and t: both types are abstract.

11.3.2 Sharing constraints

In its current state, the IntSet module is actually useless. Once again, the problem is with type
abstraction: the elt type is defined as an abstract type in the FsetSig signature. The OCaml
compiler remembers that the type of elements elt is produced by an application of the functor, but
it doesn’t know that the argument type in the Int module was int.

IntSet.insert 5 IntSet.empty;;
Characters 14-15:
This expression has type int but is here used with type

IntSet.elt = MakeFset(Int).elt

To fix this problem, we can’t add a type definition in the FsetSig module, since we want to be
able to construct finite sets with multiple different element types. The only way to fix this problem
is to add a constraint on the functor type that specifies that the elt type produced by the functor
is the same as the elt type in the argument.

11.3.3 An implementation that works

These kind of type constraints are called sharing constraints. The argument and value of the
MakeFset functor “share” the same elt type. Sharing constraints are defined by adding a with
type constraint to a signature. The corrected definition of the MakeFset functor is as follows.

92 CHAPTER 11. THE OCAML MODULE SYSTEM

module MakeFset (Elt : EltSig)
: FsetSig with type elt = Elt.elt =

struct
type elt = Elt.elt
type color = ...
type t = ...
let empty = ...
let rec mem x = ...
let balance = ...
let insert x s = ...

end;;
module MakeFset :

functor(Elt : EltSig) ->
sig

type elt = Elt.elt
and t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t

end

The toploop now displays the correct element specification. When we redefine the IntSet module,
we get a working version of finite sets of integers.

module IntSet = MakeFset (Int);;
module IntSet :

sig
type elt = Int.elt
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t

end
IntSet.empty;;
- : IntSet.t = <abstr>
open IntSet;;
let s = insert 3 (insert 5 (insert 1 empty));;
val s : IntSet.t = <abstr>
mem 5 s;;
- : bool = true
mem 4 s;;
- : bool = false

Chapter 12

The OCaml Object System

OCaml includes a unique object system with classes, parameterized classes, and objects, and the
usual features of inheritance and subclassing. Objects are perhaps not as frequently used in OCaml
as in other languages like C++ or Java, because the module system provides similar features for
code re-use. However, classes and objects are often appropriate in programs where extensibility is
desirable.

12.1 The basic object system

The OCaml object system differs in one major way from the classes defined in many other languages:
the object system includes both class types as well as class expressions. The two are separate, just
as module signatures are separate from module structures. There are three construct in the OCaml
object system: class type are signatures for classes, classes are initial specifications for objects, and
objects are instances of classes created with the new keyword.

12.1.1 Class types

A class type is defined using a class type definition. The syntax of a class type declaration is as
follows.

class type name = object declarations end

The name of the class type should begin with a lowercase letter or an underscore. The declara-
tions can include any of the following.

• Inheritance directives with the inherit keyword.

• Values, declared with the val keyword.

• Methods, declared with the method keyword.

• Type constraints, declared with the constraint keyword.

93

94 CHAPTER 12. THE OCAML OBJECT SYSTEM

To illustrate the object system, let’s use the canonical object example: a one-dimensional movable
point. The point should have methods to return and modify the position of the point.

The class type for the point includes two methods: one to get the position of the point, and
another to set the position of the point. We will also include areset function to return the point
to the origin.

class type point_type =
object

method get : int
method set : int -> unit
method reset : unit

end;;
class type point_type = object

method get : int
method set : int -> unit
method reset : unit

end

12.1.2 Class expressions

A class expression gives the definition of a class. The syntax for an class expression uses the class
keyword.

object implementation end

The implementation can include any of the following.

• Values, defined with the val keyword.

• Methods, defined with the method keyword.

• Type constraints, defined with the constraint keyword.

• Initializers, defined with the initializer keyword.

We can build a class of the point type class type by implementing each of the fields in the class
type. To implement the point, we will need to include a pos field that specifies the position of the
point. The get method should return the pos value, and the move method should add an offset to
the position.

12.1. THE BASIC OBJECT SYSTEM 95

class point =
object

val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0

end;;
class point : object

val mutable pos : int
method get : int
method reset : unit
method set : int -> unit

end

The pos <- pos + off is a side-effect : the value of pos is updated by adding the offset argu-
ment.

Note that the pos field is visible in the class type. To get the correct class type, we need to add
a type constraint.

class point : point_type =
object

val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0

end;;
class point : point_type

Class expressions are templates, like function bodies. The expressions in a class expression are
not evaluated when the class is defined; they are evaluated when the class is instantiated as an
object.

12.1.3 Objects

Objects are the values created from classes using the new keyword. The methods in the object can
be accessed by using the # operator.

let p = new point;;
val p : point = <obj>
p#get;;
- : int = 0
p#set 7;;
- : unit = ()
p#get;;
- : int = 7
let p2 = new point;;
val p2 : point = <obj>
p2#get;;
- : int = 0

96 CHAPTER 12. THE OCAML OBJECT SYSTEM

12.1.4 Parameterized class expressions

Class expressions can be parameterized in OCaml, using a fun expression. For example, suppose we
want to specify the initial position of the point as an argument to the class expression.

class make_point_class (initial_pos : int) =
object

val mutable pos = initial_pos
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0

end;;
class make_point_class : int ->

object
val mutable pos : int
method get : int
method reset : unit
method set : int -> unit

end

We have to constrain the argument initial pos to be an int: otherwise the object would be
polymorphic. Specific classes can be defined by application.

class point7 = make_point_class 7;;
class point7 : make_point_class
let p = new point7;;
val p : point7 = <obj>
p#get;;
- : int = 7
p#reset;;
- : unit = ()
p#get;;
- : int = 0

A parameterized class can also include let definitions in the function body. For example, we
can lift the pos field out of the class and use a reference cell instead.

class make_point_class (initial_pos : int) =
let pos = ref initial_pos in

object
method get = !pos
method set pos’ = pos := pos’
method reset = pos := 0

end;;
class make_point_class : int ->

object
method get : int
method reset : unit
method set : int -> unit

end

12.2. POLYMORPHISM 97

The body of the class definition is not evaluated initially—it is evaluated at object instantiation
time. All point objects will have separate positions.

let p1 = new point7;;
val p1 : point7 = <obj>
let p2 = new point7;;
val p2 : point7 = <obj>
p1#set 5;;
- : unit = ()
p2#get;;
- : int = 7

12.2 Polymorphism

Class types, class expressions, and methods can also be polymorphic. For example, consider the
parameterized class make_point_class we just defined. If we do not constrain the type of argument,
we get a type of reference cells. The syntax of a polymorphic class includes the type parameters in
square brackets after the class keyword.

98 CHAPTER 12. THE OCAML OBJECT SYSTEM

class [’a] make_ref_cell (x : ’a) =
object

val mutable contents = x
method get = contents
method set x = contents <- x

end;;
class [’a] make_ref_cell :

’a ->
object

val mutable contents : ’a
method get : ’a
method set : ’a -> unit

end
class int_ref = [int] make_ref_cell 0;;
class int_ref : [int] make_ref_cell
let p = new int_ref;;
val p : int_ref = <obj>
p#set 7;;
- : unit = ()
p#get;;
- : int = 7
class string_ref = [string] make_ref_cell "";;
class string_ref : [string] make_ref_cell
let s = new string_ref;;
val s : string_ref = <obj>
s#set "Hello";;
- : unit = ()
s#get;;
- : string = "Hello"

12.3 Inheritance

Inheritance allows classes to be defined by extension. For example, suppose we wish to define a new
point class that includes a move method that moves the point by a relative offset. The move method
can be defined using the get and set methods. To be able to access these methods, we need a self
parameter (like the this object in C++ or Java).

The self parameter is defined after the object keyword. We make a new class movable point
using the inherit keyword to inherit the point class definition.

12.3. INHERITANCE 99

class movable_point =
object (self)

inherit point
method move off =

self#set (self#get + off)
end;;

class movable_point :
object

method get : int
method move : int -> unit
method reset : unit
method set : int -> unit

end
let p = new movable_point;;
val p : movable_point = <obj>
p#set 7;;
- : unit = ()
p#get;;
- : int = 7
p#move 5;;
- : unit = ()
p#get;;
- : int = 12

12.3.1 Multiple inheritance

Classes can also be defined by inheriting from multiple classes. For example, let’s define a point
class that also has a color. The color class can be defined in the normal way.

100 CHAPTER 12. THE OCAML OBJECT SYSTEM

type color = Black | Red | Green | Blue;;
type color = | Black | Red | Green | Blue
class color =

object
val mutable color = Black
method get_color = color
method set_color color’ = color <- color’
method reset = color <- Black

end;;
class color :

object
val mutable color : color
method get_color : color
method reset : unit
method set_color : color -> unit

end
let c = new color;;
val c : color = <obj>
c#set_color Green;;
- : unit = ()
c#get_color;;
- : color = Green

To define a colored point we inherit from both classes. Objects in this class will have the
methods and values defined in both classes.

class colored_point =
object

inherit point
inherit color

end;;
Characters 63-74:
Warning: the following methods are overriden

by the inherited class: reset
class colored_point :

object
val mutable color : color
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit

end
let cp = new colored_point;;
val cp : colored_point = <obj>
cp#get;;
- : int = 0
cp#get_color;;

12.3. INHERITANCE 101

Note that the compiler produced a warning message when the colored point is created. The
point and color both define a method called reset. Which definition does the colored point use?

cp#set 7;;
- : unit = ()
cp#set_color Red;;
- : unit = ()
cp#reset;;
- : unit = ()
cp#get;;
- : int = 7
cp#get_color;;
- : color = Black

As usual, the compiler chooses the last definition of the method.

The correct version of the colored point should call both the point and color reset functions.
The colored_point method must override the definition. To do this, we need to include a name
for the object in each of the inherit declarations.

102 CHAPTER 12. THE OCAML OBJECT SYSTEM

class colored_point =
object

inherit point as p
inherit color as c
method reset =

p#reset;
c#reset

end;;
Characters 64-69:
Warning: the following methods are overriden by the inherited class:

reset
class colored_point :

object
val mutable color : color
val mutable pos : int
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit

end
let cp = new colored_point;;
val cp : colored_point = <obj>
cp#set 5;;
- : unit = ()
cp#set_color Red;;
- : unit = ()
cp#reset;;
- : unit = ()
cp#get;;
- : int = 0
cp#get_color;;
- : color = Black

The compiler still produces a warning message, but this time the reset method works correctly.

12.3.2 Virtual methods

Virtual methods can be used to postpone the implementation of methods for definition in subclasses.
For example, suppose we wish to make a point that includes a method move to move the object by
a relative offset. One way would be to inheritance to define a new class movable_point based on
the point class. Another, more general, way is to define a separate movable class that can be
combined by multiple inheritance with any class that implements the get and set methods. This
class must be declared as virtual because it can’t be instantiated (the get and set methods are
not implemented).

12.3. INHERITANCE 103

class virtual movable =
object (self)

method virtual get : int
method virtual set : int -> unit
method move off =

self#set (self#get + off)
end;;

class virtual movable :
object

method virtual get : int
method move : int -> unit
method virtual set : int -> unit

end
let m = new movable;;
Characters 8-19:
One cannot create instances of the virtual class movable

Now to create the class movable_point, we combine the classes by multiple inheritance.

class movable_point =
object

inherit point
inherit movable

end;;
class movable_point :

object
val mutable pos : int
method get : int
method move : int -> unit
method reset : unit
method set : int -> unit

end
let p = new movable_point;;
val p : movable_point = <obj>
p#set 7;;
- : unit = ()
p#move 5;;
- : unit = ()
p#get;;
- : int = 12

Note that a virtual method in OCaml does not mean the same thing as a virtual declaration
in C++. In C++, the virtual declaration means that a method can be overridden in subclasses.
In OCaml, all methods are virtual in this sense. The OCaml virtual declaration just means that
the method definition is omitted.

104 CHAPTER 12. THE OCAML OBJECT SYSTEM

12.3.3 Subclassing

The inherit declarations in a class definition define an inheritance hierarchy. In OCaml an object
can be coerced to a class type of any of its ancestors. Coercions in OCaml must be made explicitly
using the :> operator, which requires two class types: the type of the object, and the type of the
object after the coercion.

let p = (cp : colored_point :> point);;
val p : point = <obj>
p#get;;
- : int = 0
p#get_color;;
Characters 0-1:
This expression has type point
It has no method get_color

If the class type can be inferred, the first type can be omitted.

let p = (cp :> point);;
val p : point = <obj>

In OCaml, objects can also be coerced to any class type that has fewer methods. For example,
suppose we want a “read only” colored point without the set and set color methods.

class type read_only_point =
object

method get : int
method get_color : color

end;;
class type read_only_point =

object
method get : int
method get_color : color

end
let ro_p = (cp : colored_point :> read_only_point);;
val ro_p : funny_point = <obj>
ro_p#get;;
- : int = 0
ro_p#get_color;;
- : color = Red
ro_p#set 5;;
Characters 0-4:
This expression has type read_only_point
It has no method set

12.3.4 Superclassing, or typecase

In OCaml, there is no operator to coerce an object to a superclass (there is no “typecase” operator,
or instanceof predicate like in Java). So for instance, once we coerce a colored_point to a point,
there is no corresponding operator for recovering the colored_point.

12.3. INHERITANCE 105

This kind of problem can arise frequently in some contexts, especially when binary functions are
defined over two objects. For example, suppose we wish to implement an equality relation on points.
The point_equal function should take two objects. If both objects have type point, and both have
the same position, the point_equal function should return true. If both are colored_points, and
have the same position and color, it should also return true. Otherwise, it should return false.

How can we define this function? One thing is clear, the point_equal function must have type
point -> point -> bool because the type of point is not known beforehand. If the argument is
of type point, how can we tell if it is actually a colored_point?

The easiest way to solve this problem is to use a “trick.” For each class, we add a new method
that uses an exception to return the actual value. We will call this method typecase, and it will
have type unit (since it returns the result by exception). The point class implements the typecase
method as follows.

class type point_type =
object

method get : int
method set : int -> unit
method reset : unit
method typecase : unit

end;;
class type point_type =

object
method get : int
method reset : unit
method set : int -> unit
method typecase : unit

end
exception Point of point_type;;
exception Point of point_type
class point =

object (self)
val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0
method typecase = raise (Point (self :> point_type))

end;;
class point :

object
val mutable pos : int
method get : int
method reset : unit
method set : int -> unit
method typecase : unit

end

The typecase method raises the Point exception. Note that the self parameter must be coerced

106 CHAPTER 12. THE OCAML OBJECT SYSTEM

to point_type.

For the colored_point, we perform a similar operation. First, we define the type of colored
points, and the exception.

class type colored_point_type =
object

inherit point
inherit color

end;;
class type colored_point_type =

object
val mutable color : color
val mutable pos : int
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
method typecase : unit

end
exception ColoredPoint of colored_point_type;;
exception ColoredPoint of colored_point_type

Next, we define the class, and override the typecase method.

12.3. INHERITANCE 107

class colored_point =
object (self)

inherit point as p
inherit color as c
method reset =

p#reset;
c#reset

method typecase =
raise (ColoredPoint (self :> colored_point_type))

end;;
Characters 77-82:
Warning: the following methods are overriden by the inherited class:

reset
class colored_point :

object
val mutable color : color
val mutable pos : int
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
method typecase : unit

end

Now, the typecase method can be used to determine the class type of a point.

let p1 = new point;;
val p1 : point = <obj>
let p2 = new colored_point;;
val p2 : colored_point = <obj>
let p3 = (p2 :> point);;
val p3 : point = <obj>
p1#typecase;;
Uncaught exception: Point(_)
p2#typecase;;
Uncaught exception: ColoredPoint(_)
p3#typecase;;
Uncaught exception: ColoredPoint(_)

At this point, we can define the point_print printing function.

108 CHAPTER 12. THE OCAML OBJECT SYSTEM

let point_print p =
try p#typecase with

Point p ->
printf "Point: position = %d\n" p#get

| ColoredPoint p ->
let color =

match p#get_color with
Black -> "black"

| Red -> "red"
| Green -> "green"
| Blue -> "blue"

in
printf "ColoredPoint: position = %d, color = %s\n" p#get color

| _ ->
raise (Invalid_argument "point_print");;

val point_print : < typecase : unit; .. > -> unit = <fun>
p1#set 7;;
- : unit = ()
p2#set_color Green;;
- : unit = ()
List.iter point_print [p1; (p2 :> point); p3];;
Point: position = 7
ColoredPoint: position = 0, color = green
ColoredPoint: position = 0, color = green
- : unit = ()

There are two things to note. First, the point_print function takes any object with a typecase
method—no just points. Second, we include a default exception case: if the typecase method
returns some other exception, the argument is invalid.

12.4 Functional objects

In all of the examples we have given so far, the methods work by side-effect. OCaml can also be
used to implement functional objects, where method updates produce new values by copying the
self object. The syntax for a functional update uses the

{< ... >}

notation to produce a copy of the current object with the same type as the current object, with
updated fields. The use of the update operator is important—it is the only way to preserve the
current object’s type.

Let’s build a functional version of points. We include the pos field, which the set method
replaces.

12.4. FUNCTIONAL OBJECTS 109

class point =
object

val pos = 0
method get = pos
method set pos’ = {< pos = pos’ >}

end;;
class point :

object (’a)
val pos : int
method get : int
method set : int -> ’a

end
let p1 = new point;;
val p1 : point = <obj>
p1#get;;
- : int = 0
let p2 = p1#set 5;;
val p2 : point = <obj>
p2#get;;
- : int = 5

Note the type of the set method: on an object of type ’a, it takes an integer argument, and
returns a new object of type ’a.

The color class can also be modified so that it is functional.

class color =
object

val color = Black
method get_color = color
method set_color color’ = {< color = color’ >}
method reset = {< color = Black >}

end;;
class color :

object (’a)
val color : color
method get_color : color
method reset : ’a
method set_color : color -> ’a

end

What about the colored_point example? For the reset function, we need to invoke the reset
method from both the point and color superclasses. There is no syntax to do this directly; for this
purpose, we will need to make use of private methods, so that we can name the reset functions.

110 CHAPTER 12. THE OCAML OBJECT SYSTEM

class colored_point =
object (self)

inherit point as p
inherit color as c
method private p_reset = p#reset
method private c_reset = c#reset
method reset = self#p_reset#c_reset

end;;
Characters 75-80:
Warning: the following methods are overriden by the inherited class:

reset
class colored_point :

object (’a)
val color : color
val pos : int
method c_reset : ’a
method get : int
method get_color : color
method private p_reset : ’a
method reset : ’a
method set : int -> ’a
method set_color : color -> ’a

end

The resulting object has the expected behavior.

let p1 = new colored_point;;
val p1 : colored_point = <obj>
let p2 = p1#set 7;;
val p2 : colored_point = <obj>
let p3 = p2#set_color Blue;;
val p3 : colored_point = <obj>
p3#get;;
- : int = 7
p3#get_color;;
- : color = Blue
p2#get_color;;
- : color = Black
let p4 = p3#reset;;
val p4 : colored_point = <obj>
p4#get;;
- : int = 0
p4#get_color;;
- : color = Black

Bibliography

[1] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth ACM
Symposium on Principles of Programming Languages, pages 207–212, 1982.

[2] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mechanized logic
of computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, NY, 1979.

[3] Xavier Leroy. The Objective Caml System: Documentation and User’s Manual, 2002. With
Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Availiable from http:
//www.ocaml.org/.

[4] Chris Okasaki. Red-black trees un a functional setting. Journal of Functional Programming,
9(4):471–477, May 1999.

[5] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object–oriented extension of ML. In
ACM Symposium on Principles of Programming Languages, pages 40–53, 1997.

111

http://www.ocaml.org/�
http://www.ocaml.org/�

