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Valex: Primitive Operators and Desugaring

VALEX is a language that extends BINDEX with several new primitive data types and some
constructs that express branching control flow. We study VALEX for two reasons:

1. To show how multiple primitive data types are handled by the interpreter. In particular, the
VALEX interpreter performs dynamic type checking to guarantee that operators are called
only on the right types of operands.

2. To show that a language implementation can be significantly simplified by decomposing it
into three parts:

(a) a small kernel language with only a few kinds of expressions;
(b) synactic sugar for expressing other constructs in terms of kernel expressions;

(c) an easily extensible library of primitives.

1 The VALEX Language

Whereas all values in INTEX and BINDEX are integers, VALEX supports several additional types of
values: booleans, strings, characters, symbols, and lists. It also supports several boolean-controlled
constructs for expressing branching control.

1.1 Booleans

VALEX also includes the two values #t (stands for truth) and #f (stands for falsity). These values
are called booleans in honor of George Boole, the nineteenth century mathematician who invented
boolean algebra.

The two boolean values can be written directly as literals, but can also be returned as the result
of applying relational operators to integers (<=, <, >, >= = =) and logical operators to booleans
(not, and, or, bool=). The = operator tests two integers for equality, while != tests two integers
for inequality. The and operator returns the logical conjunction (“and”) of two boolean operands,
while or returns the logical disjunction (“or”) of two boolean operands. The bool= operator tests
two booleans for equality. For example:

valex> (< 3 4)
#t

valex> (= 3 4)
#f

valex> (!= 3 4)
#t



valex> (not (= 3 4))
#t

valex> (and (< 3 4) (>= 5 5))
#t

valex> (and (< 3 4) (> 5 5))
#f

valex> (or (< 3 4) (> 5 5))
#t

valex> (or (> 3 4) (> 5 5))
#f

valex> (bool= #f #f)
#t

valex> (bool= #t #f)
#f

If an VALEX operator is supplied with the wrong number or wrong types of operands, a dynamic
type checking error is reported.

valex> (< 5)
EvalError: Expected two arguments but got: (5)

valex> (= 5 6 7)
EvalError: Expected two arguments but got: (5 6 7)

valex> (+ 1 #t)
EvalError: Expected an integer but got: #t

valex> (and #t 3)
EvalError: Expected a boolean but got: 3

valex> (= #t #f)
EvalError: Expected an integer but got: #t

valex> (bool= 7 8)
EvalError: Expected a boolean but got: 7

1.2 Boolean-Controlled Constructs

The key purpose of booleans is to direct the flow of control in a program with a branching control
structure.



The fundamental control construct in VALEX is a conditional construct with the same syntax as
Scheme’s if construct: (if FEiest Fipen Feise). Unlike Scheme, which treats any non-false value
as true in the context of an if, VALEX requires that the test expression evaluate to a boolean. A
non-boolean test expression is an error in VALEX.

valex> (if (< 1 2) (+ 3 4) (x5 6))
7

valex> (if (> 1 2) (+ 34) (x5 6))
30

valex> (if (- 1 2) (+ 3 4) (x 5 6))
Error! Non-boolean test in an if expression.

scheme> (if (- 1 2) (+ 3 4) (x 5 6))
7

valex> (if (< 1 2) (+ 3 4) (div 5 0))
7

valex> (if (> 1 2) (+ 34 5) (x5 6))
7

The last two test expressions highlight the fact that exactly one of Eye, and E e is evaluated.
The expression in the branch not taken is never evaluated, and so the fact that such branches might
contain an error is never detected.

Evaluating only one of the two branches is more than a matter of efficiency. In languages with
recursion, it is essential to the correctness of recursive definitions. For example, consider a Scheme
definition of factorial:

(define fact

(lambda (n)
(if (=n 0)
1

(* n (fact (- n 1))))))

If both branches of the if were evaluated, then an application of fact, such as (fact 3), would
never terminate! This is why if must be a “special form” in call-by-value languages and not just
an application of a primitive operator; in applications of primitive operators in a call-by-value
language, all operand expressions must be evaluated.

VALEX also has a multi-clause conditional construct with the same syntax as Scheme’s cond
construct:

(program (x y)
(cond ((< x y) (symbol less))
((= x y) (symbol equal))
(else (symbol greater))))



The only difference in meaning between the VALEX cond and the Scheme cond is the same as that
for if: each test expression evaluated in the VALEX cond must be a boolean.

Like many languages, VALEX provides “short-circuit” logical conjunction and disjunction con-
structs, respectively && (cf. Scheme’s and, Java/C’s &&) and || (cf. Scheme’s or, Java/C’s | |):

(&& Emndl EmndQ)
(11 Erandl ErandQ)

These are similar to the binary operators and and or, except that E, 4,42 is never evaluated if the
result is determined by the value of F,.,4;. For instance, in &&, F,..q; is first evaluated to the
value Vignar- If Vignas is #t, then F,4,42 is evaluated, and its value (which must be a boolean) is
returned as the value of the && expression. But if V4,47 is #f, then #f is immediately returned as
the value of the && and E,,,q2 is never evaluated. Similarly, in ||, if V,g4.q; is #t, a value of #t
is returned for the || expression without E,,,42 being evaluated; otherwise the value of F,4pq2 is
returned. In contrast, both operand expressions of and and or are always evaluated.

valex> (and (=1 2) (> 3 4 5))
EvalError: Expected two arguments but got: (3 4 5)

valex> (& (=1 2) (> 3 4 5))
#f

valex> (or (< 1 2) (+ 3 4))
EvalError: Expected a boolean but got: 7

valex> (|| (<1 2) (+ 3 4))
#t

valex> (and (< 1 2) (+ 3 4))
EvalError: Expected a boolean but got: 7

valex> (&& (< 1 2) (+ 3 4))
7

The final example shows that when its first operand is true && will return the value of its second
operand regardless of whether or not it is a boolean.

In many cases &&/| | behave indistinguishably from the boolean operators and/or, which eval-
uate both of their operands. To see the difference, it is necessary to consider cases where not
evaluating F» makes a difference. In VALEX, such a situation occurs when evaluating E» would
otherwise give an error. For instance, consider the following VALEX program:

(valex (x)
At (1 (=x 0
(> (div 100 x) 7))
(+ x 1)
(* x 2)))

This program returns 1 when applied to 0. But if the || were changed to or, the program would
encounter a divide-by-zero error when applied to 0 because the div application would be evaluated
even though (= x 0) is true.

This example is somewhat contrived, but real applications of short-circuit operators abound in
practice. For example, consider the higher-order OCAML for_all function we studied earlier this
semester:



let rec for_all p xs =
match xs with
[1 -> true

| x::xs8’ -> (p x) && for_all p xs’

In OcaML, && is the short-circuit conjunction operator. It is important to use a short-circuit

operator in for_all because it causes the recursion to stop as soon as an element is found for

which the predicate is false. If && were not a short-circuit operator, then for_all of a very long

list would explore the whole list even in the case where the very first element is found to be false.
As another example, consider the following Java insertion_sort method:

public void insertion_sort (int[] A) {
for (int i = 0; i < A.length; i++) {
int x = A[i];
int j = i-1;
// Insertion loop
while ((j >= 0) && (A[j] > x)) {
A[j+1] = A[j];
J=s
}
A[j+1] = x;
}
}

The use of the short-circuit && operator in the test of the while loop is essential. In the case
where j is -1, the test ((j >= 0) && (A[j] > x)) is false. But if both operands of the && were
evaluated, the evaluation of A[-1] would raise an array out-of-bounds exception.

1.3 Strings

VALEXsupports string values. As usual, string literals are delimited by double quotes.

1.4 Characters

VALEXsupports character values. As usual, string literals are delimited by single quotes.

1.5 Symbols

VALEX supports a Scheme-like symbol data type. A symbolic literal, written (sym symbolname),
denotes the name symbolname. So sym is a kind of “quotation mark”, similar to quote in Scheme,
that distinguishes symbols (such as (sym x)) from variable references (such as x).

The only operation on symbols is equality, which is tested via the operator sym=. For example:

valex> (sym= (sym foo) (sym foo))
#t

valex> (sym= (sym foo) (sym bar))
#1



1.6 List

VALEX supports list values. The empty list is written #e. The prepending function prep adds an
element to the front of a list. The head function returns the head of a list while tail returns the
tail. A list is tested for emptiness via empty?. The notation:

(list E1 En)

is a shorthand for creating a list of n elements.

2 The VALEX Kernel

The VALEX kernel language has only five kinds of expressions:

1. literals (which include boolean and symbolic literals as well as integers),
variable references,
single-variable local variable declarations (i.e., bind),

primitive applications (can have any number of operands of any type), and
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conditional expressions (i.e., if).

We shall see that these five expression types are sufficient for representing all VALEX expressions.

The abstract syntax for the VALEX kernel is presented in Fig. 1. The exp type expresses the five
different kinds of VALEX expressions. The valu! type expresses the six different types of VALEX
values.

Primitive operators are represented via the primop type, whose single constructor Primop com-
bines the name of the operator with an OCAML function of type valu list -> valu that specifies
the behavior of the operator. The two components of a primop can be extracted via the functions
primopName and primopFunction. We will study the specification of primitives in Sec. ?7. We will
see that the key benefit of the VALEX approach to specifying primitives is that the VALEX abstract
syntax need not be extended every time a new primitive operator is added to the language. In
contrast, INTEX and BINDEX were implemented with a binop type that did need to be extended:

and binop = | Add | Sub | Mul | Div | Rem

The unparsing of VALEX abstract syntax is straightforward (Fig. 2). The only feature worth
noting is that there is a valuToSexp function that handles the unparsing of the boolean true
value to #t, the boolean false value to #f, the empty list #e, and non-empty lists to the form
(list V; ... V).

The parsing of VALEX abstract syntax is more involved. We delay a presentation of this until
our discussion of desugaring in Sec. 77.

In VALEX, the free variables are calculated as in BINDEX, except there are two new clauses: one
for general primitive applications and one for conditionals:

and freeVarsExp e =
match e with

| PrimApp(_,rands) -> freeVarsExps rands
| If(tst,thn,els) -> freeVarsExps [tst;thn;els]

!The name valu was chosen because the names val and value are already reserved keywords in OCAML that
cannot be used as type names.



and

let

let

type var = string

type pgm = Pgm of var list * exp (* param names, body *)

exp =

Lit of valu (x* integer, boolean, and character literals *)

Var of var (* variable reference *)

PrimApp of primop * exp list (* primitive application with rator, rands *)
Bind of var * exp * exp (* bind name to value of defn in body *)

If of exp * exp * exp (* conditional with test, then, else *)

valu =

Int of int

Bool of bool
Char of char
String of string
Symbol of string
List of valu list

primop = Primop of var * (valu list -> valu) (* primop name, function *)
primopName (Primop(name,_)) = name

primopFunction (Primop(_,fcn)) = fcn

Figure 1: Data types for VALEX abstract syntax.

Similarly, the VALEX subst function has two new clauses:

let rec subst exp env =
match exp with

| PrimApp(op,rands) -> PrimApp(op, map (flip subst env) rands)
| If(tst,thn,els) —> If(subst tst env, subst thn env, subst els env)

The complete environment model evaluator for VALEX is shown in Fig. ??. It is very similar to
the BINDEX environment model evaluator except:

e In the top-level call to eval from run, it is necessary to inject each integer argument into

the valu type using the Int constructor. (For simplicity, we still assume that all program
arguments are integers even though our language supports a richer collection of values.)

e VALEX environments hold arbitrary values rather than just integers, so the type of eval is:

val eval : Valex.exp -> valu Env.env -> valu

e Since each primop holds the OcAML function specifying its behavior, all the primitive appli-

cation clause has to do is apply this function to the evaluated operands. There is no need for
the analog of the auxiliary binApply function used in the INTEX and BINDEX interpreters.

e It has a clause for evaluating conditionals. Note that:

— OcaML’s if is used to implement VALEX’s if;




(* val pgmToSexp : pgm —> Sexp.sexp *)
let rec pgmToSexp p =
match p with
Pgm (fmls, e) —>
Seq [Sym "valex"; Seq(map (fun s -> Sym s) fmls); expToSexp e]

(* val expToSexp : exp —-> Sexp.sexp *)
and expToSexp e =

match e with

Lit v -> valuToSexp v
| Var s -> Sym s
| PrimApp (rator, rands) ->
Seq (Sym (primopName rator) :: map expToSexp rands)
| Bind(n,d,b) -> Seq [Sym "bind"; Sym n; expToSexp d; expToSexp b]
| If(tst,thn,els) -> Seq [Sym "if"; expToSexp tst; expToSexp thn; expToSexp els]

(* val valuToSexp : valu -> sexp *)
let rec valuToSexp valu =
match valu with
Int i -> Sexp.Int i
Bool b -> Sym (if b then "#t" else "#f")
Char ¢ -> Sexp.Chr c
String s -> Sexp.Str s
Symbol s -> Seq [Sym "sym"; Sym s]
List [] -> Sym "#e" (* special case *)
List xs -> Seq (Sym "list" :: (map valuToSexp xs))

(* val valuToString : valu -> string *)
let valuToString valu = sexpToString (valuToSexp valu)

(* val valusToString : valu list -> string *)
and valusToString valus = sexpToString (Seq (map valuToSexp valus))

(* val expToString : exp -> string *)
and expToString s = sexpToString (expToSexp s)

(* val pgmToString : pgm -> string *)
and pgmToString s = sexpToString (pgmToSexp s)

Figure 2: Unparsing functions for the VALEX abstract syntax.



— at most one of the two conditional branches (thn, els) is evaluated;

— because VALEX has many different kinds of values, dynamic type checking must be
performed on the test expression tst to ensure that it is a boolean. If not, a dynamic
type error is reported.

(* val run : Valex.pgm -> int list -> valu *)
let rec run (Pgm(fmls,body)) ints =
let flen = length fmls
and ilen = length ints
in
if flen = ilen then
eval body (Env.make fmls (map (fun i -> Int i) ints))
else
raise (EvalError ("Program expected " ~ (string_of_int flen)
~ " arguments but got " ~ (string_of_int ilen)))

(x val eval : Valex.exp -> valu Env.env -> valu *)
and eval exp env =
match exp with
Lit v > v
| Var name ->
(match Env.lookup name env with
Some(i) -> i
| None -> raise (EvalError("Unbound variable: " ~ name)))
| PrimApp(op, rands) -> (primopFunction op) (map (flip eval env) rands)
| Bind(name,defn,body) -> eval body (Env.bind name (eval defn env) env)
| If(tst,thn,els) —>
(match eval tst env with
Bool true -> eval thn env
| Bool false -> eval els env
| v -> raise (EvalError ("Non-boolean test value
" (valuToString v)
" in if expression:\n"
~ (expToString exp)))

Figure 3: The environment model evaluator for the VALEX kernel.

The complete substitution model evaluator for VALEX is shown in Fig. 7?7. It is similar to the
BINDEX substitution model evaluator except for differences analagous to the ones discussed for the
environment model evaluator.

This completes the presentation of the implementation of the VALEX kernel. Even though
VALEX has many more features than BINDEX, its kernel differs from the BINDEX kernel in only
relatively minor ways. And in some ways, such as the evaluation of primitive applications, it is
even simpler.

We will now discuss in more detail the specification of primitive operators and syntactic sugar,
features that are key in simplifying the VALEX implementation.



(* val run : Valex.pgm -> int list -> int *)
let rec run (Pgm(fmls,body)) ints =
let flen = length fmls
and ilen = length ints
in
if flen = ilen then
eval (subst body (Env.make fmls (map (fun i -> Lit (Int i)) ints)))
else
raise (EvalError ("Program expected " ~ (string_of_int flen)
~ " arguments but got " ~ (string_of_int ilen)))

(* val eval : Valex.exp -> valu *)
and eval exp =
match exp with
Lit v -> v
Var name -> raise (EvalError("Unbound variable: name) )
PrimApp(op, rands) -> (primopFunction op) (map eval rands)
Bind(name,defn,body) -> eval (substl (Lit (eval defn)) name body)
If(tst,thn,els) ->
(match eval tst with
Bool true -> eval thn
| Bool false -> eval els
| v -> raise (EvalError ("Non-boolean test value "
(valuToString v)
" in if expression:\n"
(expToString exp)))

Figure 4: The substitution model evaluator for the VALEX kernel.
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3 Primitive Operators

In the implementation architecture exemplified by BINDEX, adding a new primitive is more tedious
than it should be. To show this, we will consider the four steps required to add an exponentiation
operator = to BINDEX:

1. Extend the binop type with a nullary Expt constructor:

and binop = ... | Expt

2. Extend the stringToBinop function with a clause for Expt:

and stringToBinop s =
match s with

| "~ -> Expt
| _ -> raise (SyntaxError ("invalid Bindex primop: " ~ s))

3. Extend the binopToString function with a clause for Expt:

and binopToString p =
match p with

| EXpt _> n-=n

4. Extend the binApply function with a clause for Expt:
(* val binApply : Bindex.binop -> int -> int -> int *)
and binApply op x y =
match op with

| Expt -> if y < O then
raise (EvalError ("Exponentiation by negative base: "
~ (string_of_int y)))
else
let rec loop n ans = if n = 0 then ans else loop (n-1) (y*ans)

in loop x ans

The four extensions are spread across two modules in two files of the BINDEX implementation. So
adding a primitive requires touching many parts of the code and ensuring that they are consistent.

It would be preferable to have a means of specifying primitives that only requires changing
one part of the code instead of four. The VALEX implementation has this feature. The collection
of primitives handled by the language are specified in a single list primops of type primop list.
Recall that primop is defined as:

and primop = Primop of var * (valu list -> valu) (* primop name, function *),

so each primitive is specified by providing its name and behavior. To facilitate the manipulation
of primitive operators by their names, names are associated with the primitive operators in the
environment primopEnv:
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let primopEnv = Env.make (map (fun (Primop(name,_)) -> name) primops) primops
let isPrimop s = match Env.lookup s primopEnv with Some _ -> true | None -> false

let findPrimop s = Env.lookup s primopEnv

We now consider the specification of individual primitives. Here is one way we could specify
the addition, less-than, and boolean negation primitives:
(* Addition primitive *)
Primop("+", fun vs -> match vs with
[Int i1, Int i2] -> Int (i1+i2)
| _ -> raise (EvalError "invalid args to +"))
(* Relational primitive *)
Primop("<", fun vs -> match vs with
[Int i1, Int i2] -> Bool (i1<i2)
| _ -> raise (EvalError "invalid args to <"))
(* Logical primitive *)
Primop("not", fun vs -> match vs with
[Bool b] -> Bool (not b)

| _ -> raise (EvalError "invalid args to not"))

Note that each OCAML function must test the number of argument values and the types of these
values to check that they are correct (or raise an exception if they aren’t). This dynamic type
checking process is required whenever a language has multiple value types and the types are not
checked statically (i.e., before the program is run). We will study how to perform static type
checking later in the semester.

To simplify checking the number of arguments and their types, we employ the auxiliary functions
in Fig. ??. The checker functions checkInt, checkBool, and friends abstract over checking the
type of an individual argument. The checkZeroArgs, checkOneArgs, and checkTwoArgs functions
abstract over the checking for 0, 1, and 2 arguments, respectively. Each of these takes a number of
checkers equal to the number of arguments for checking the individual arguments.

Abstracting over the dynamic type checking, particularly the details of generating helpful error
messages, considerably simplifies the specification of our three sample primitives:

Primop("+", checkTwoArgs (checkInt, checkInt) (fun il i2 -> Int(il+i2)))
Primop("<", checkTwoArgs (checkInt, checkInt) (fun il i2 -> Bool(il<i2)))

Primop("not", checkOneArg checkBool (fun b -> Bool(not b)))

We can abstract even more over common patterns like arithmetic an relational operators:

let arithop f = checkTwoArgs (checkInt,checkInt) (fun il i2 -> Int(f il i2))
let relop f = checkTwoArgs (checkInt,checkInt) (fun il i2 -> Bool(f il i2))
let logop f = checkTwoArgs (checkBool,checkBool) (fun bl b2 -> Bool(f bl b2))

let pred f = checkOneArg checkAny (fun v -> Bool(f v))

With these further abstractions, our first two become:

Primop("+", arithop (+))
Primop("<", relop (<))

Figs. 77 and 7?7 present the complete specification of all VALEX primitives.
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let checkInt v f =
match v with
Int i > f i
| _ -> raise (EvalError ("Expected an integer but got: "

(valuToString v)))

let checkBool v f =
match v with
Bool b -> £ b
| _ -> raise (EvalError ("Expected a boolean but got: "

(valuToString v)))

let checkChar v f =
match v with
Char ¢ -> f ¢
| _ -> raise (EvalError ("Expected a char but got: "

(valuToString v)))

let checkString v f =
match v with
String s -> f s
| _ -> raise (EvalError ("Expected a string but got: " ~ (valuToString v)))

let checkSymbol v f =
match v with
Symbol s -> f s
| _ -> raise (EvalError ("Expected a symbol but got: " ~ (valuToString v)))

let checkList v f =
match v with
List vs => f vs
| _ -> raise (EvalError ("Expected a list but got: " ~ (valuToString v)))

let checkAny v f = f v (* always succeeds *)

let checkZeroArgs f =
fun vs ->
match vs with
0->£0

| _ -> raise (EvalError ("Expected zero arguments but got: "

(valusToString vs)))

let checkOneArg check f =
fun vs ->
match vs with
(vl -> check v f
| _ -> raise (EvalError ("Expected one argument but got: " ~ (valusToString vs)))

let checkTwoArgs (checkl,check2) f =
fun vs ->
match vs with
[vi;v2] -> checkl vl (fun x1 -> check2 v2 (fun x2 -> f x1 x2))
| _ -> raise (EvalError ("Expected two arguments but got: " ~ (valusToString vs)))

Figure 5: Auxiliary functions for dynamic type checking of primitive operators.
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let primops = [
(* Arithmetic ops *)
Primop("+", arithop (+));
Primop("-", arithop (-));
Primop("*", arithop ( * ));
Primop("/", arithop (fun x y ->
if (y = 0) then
raise (EvalError ("Division by 0: "
" (string_of_int x)))
else x/y));
Primop("%", arithop (fun x y ->
if (y = 0) then
raise (EvalError ("Remainder by 0: "
" (string_of_int x)))
else x mod y));

(* Relational ops *)
Primop("<", relop (<));
Primop("<=", relop (<=));
Primop("=", relop (=));
Primop("!=", relop (<>));
Primop(">=", relop (>=));
Primop(">", relop (>));

(* Logical ops *)

Primop("not", checkOneArg checkBool (fun b -> Bool(not b)));
Primop("and", logop (&&)); (* *not* short-circuit! *)
Primop("or", logop (l1)); (% *not* short-circuit! *)
Primop("bool=", logop (=));

(* Char ops *)
Primop("char=", checkTwoArgs (checkChar, checkChar) (fun c1 c2 -> Bool(cl=c2)));
Primop("char<", checkTwoArgs (checkChar, checkChar) (fun cl c2 -> Bool(cl1<c2)));
Primop("int->char", checkOneArg checkInt (fun i -> Char(char_of_int i)));
Primop("char->int", checkOneArg checkChar (fun ¢ -> Int(int_of_char c)));
Primop("explode", checkOneArg checkString
(fun s -> List (let rec loop i chars =
if i < 0 then chars
else loop (i-1) ((Char (String.get s i)) :: chars)
in loop ((String.length s)-1) [1)));
Primop("implode", checkOneArg checkList
(fun chars -> String (let rec recur cs =
match cs with
->"
| ((Char c)::cs’) -> (String.make 1 c) ~ (recur cs’)
| _ -> raise (EvalError "Non-char in implode")
in recur chars)));

Figure 6: VALEX primitive operators, Part 1.
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(* String ops *)

Primop("str=", checkTwoArgs (checkString,checkString) (fun sl s2 -> Bool(sl1=s2)));
Primop("str<", checkTwoArgs (checkString,checkString) (fun sl s2 -> Bool(s1<s2)));
Primop("strlen", checkOneArg checkString (fun s -> Int(String.length s)));
Primop("str+", checkTwoArgs (checkString,checkString) (fun sl s2 -> String(s17s2)));
Primop("toString", checkOneArg checkAny (fun v -> String(valuToString v)));

(* Symbol op *)
Primop("sym=", checkTwoArgs (checkSymbol,checkSymbol) (fun sl s2 -> Bool(sl=s2)));

(* List ops *)
Primop("prep", checkTwoArgs (checkAny,checkList) (fun v vs -> List (v::vs)));
Primop("head", checkOneArg checkList
(fun vs —>
match vs with
[l -> raise (EvalError "Head of an empty list")
| (vi:il) => v));
Primop("tail", checkOneArg checkList
(fun vs —>
match vs with
[l -> raise (EvalError "Tail of an empty list")
| (_::vs?’) -> List vs?’));
Primop("empty?", checkOneArg checkList (fun vs -> Bool(vs = []1)));
Primop("empty", checkZeroArgs (fun () -> List [1));

(* Predicates *)

Primop("int?", pred (fun v -> match v with Int _ -> true | _ -> false));
Primop("bool?", pred (fun v -> match v with Bool _ -> true | _ -> false));
Primop("char?", pred (fun v -> match v with Char _ -> true | _ -> false));
Primop("sym?", pred (fun v -> match v with Symbol _ -> true | _ -> false));
Primop("string?", pred (fun v -> match v with String _ -> true | _ -> false));
Primop("list?", pred (fun v -> match v with List _ -> true | _ -> false));

Figure 7: VALEX primitive operators, Part 2.
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4 Desugaring

Syntactic sugar causes cancer of the semicolon.
— Alan Perlis

4.1 Motivation

It is hard work to add a new construct to a language like BINDEX or VALEX by extending the
abstract syntax. For each construct, we have to perform the following steps:

1. Extend the exp data type with a constructor for the new construct.

2. Extend the sexpToExp function to parse the new construct.

3. Extend the expToSexp function to unparse the new construct.

4. Extend the freeVarsExp function to determine the free variables of the new construct.
5. Extend the subst function to perform substitution on the new construct.

6. Extend the environment model eval function handle the the new construct.

7. Extend the substitution model eval function handle the the new construct.

In sum, at least seven steps must be taken whenever we add a new construct. And this does not
include other functions, like uniquify (for uniquely renaming expressions) that we might want.
Nor does it consider other variants with which we might want to experiment, such as call-by-name
evaluation. So even more functions might need to be updated in practice.

In some cases the functions are straightforward but tedious to extend. In other cases (especially
constructs involving variable declarations), the clauses for the new construct can be rather tricky.
In any of these cases, the work involved is an impediment to experimenting with new language
constructs. This is sad, because ideally interpreters should encourage designing and tinkering with
programming language constructs.

Fortunately, for many language constructs there is a way to have our cake and eat it too! Rather
than extending lots of functions with a new clause for the construct, we can instead write a single
clause that transforms the new construct into a pattern of existing constructs that has the same
meaning. When this is possible, we say that the new construct is syntactic sugar for the existing
constructs, suggesting that it makes the language more palatable without changing its fundamental
structure. The process of remove syntactic sugar by rewriting a construct into other constructs of
the language is known is desugaring. After a construct has been desugared, it will not appear in
any expressions, and thus must not be explicitly handled by functions like freeVarsExp, subst,
etc.

4.2 Simple Examples

Many constructs can be understood by translating them into other constructs of a language. For
instance, the short-circuit conjunction construct

(&& E; E5)

is equivalent to
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(if E; E, #£)

and the short-circuit disjunction construct
(1 E; Eg)

is equivalent to
(if E; #t Ej)

As a more complex example, consider the bindseq expression:

(bindseq ((I; Ej)
(I, E5)

I, En))
Ebody)

This can be desugared into a nested sequence of bind expressions:
(bind I; E;
(bind IQ EQ

(bind I,, F,
Epody) .. )

Even bindpar can be desugared in a similar fashion as long as we rename all the bound variables.
That is,

(bindpar ((I; E;)
(I, Ej)

U En))
Ebody)

can be desugared to

(bind I] ! E1
(bind ,[2/ E2

(bind I,,’ E,
Epody!) .- )

where I;’ ...I," are fresh variables and Fj,q, ' is the result of renaming I; ... I to I;' ... I, in
Ebody'

As a final VALEX example, consider the cond construct:
(cond (Etestl Eresultl)

(Etestn Eresultn )

(else Edefault))
This desugars to:
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( if Etest1
Eresultl

(if Etestn
Eresultn
Edefault) )

It turns out that many programming language constructs can be expressed as synactic sugar
for other other constructs. For instance, C and Java’s for loop

for (init; test; update) {
body

}

can be understood as just syntactic sugar for the while loop

init;

while (test) do {
body ;
update ;

.

Other looping constructs, like C/Java’s do/while and Pascal’s repeat /until can likewise be viewed
as desugarings. As another example, the C array subscripting expression a[i] is actually just
syntactic sugar for *(a + i), an expression that dereferences the memory cell at offset i from the

base of the array pointer a.?

4.3 A First Cut at Desugaring: The All-at-once Approach

We can implement the kinds of desugaring examples given above by including a clause for each
one in the sexpToExp function that parses s-expressions into instances of the VALEX exp type. For
example, the clause to handle && would be:

| Seq [Sym "&&"; randlx; rand2x] ->
If (sexpToExp randix, sexpToExp rand2x, Lit (Bool false))

Here’s a clause to handle cond:
| Seq (Sym "cond" :: clausexs) -> desugarCond clausexs

In this case, we need an auxiliary recursive function to transform the clauses into a nested sequence
of if expressions:

and desugarCond clausexs = (* clausesx is a list of sexp clauses *)
match clausexs with
[Seq[Sym "else"; defaultx]] -> sexpToExp defaultx
| (Seq[testx; resultx])::restx —->
If (sexpToExp testx, sexpToExp resultx, desugarCond restx)
| _ -> raise (SyntaxError ("invalid cond clauses: " ~ (sexpToString (Seq clausexs))))

2 An interesting consequence of this desugaring is that the commutativity of addition implies a[i] = *(a + i) =
*(1i + a) = il[al. So in fact you can swap the arrays and subscripts in a C program without changing its meaning!
Isn’t C a fun language?

18



We call this approach to desugaring the all-at-once approach because it performs the complete
desugaring in a single pass over the s-expression. Figs. 77 and 7?7 present the complete all-at-once
desugarings for VALEX.

(* val sexpToExp : Sexp.sexp —> exp *)
and sexpToExp sexp =
match sexp with

(* "All-at-once" desugarings *)
| Seq [Sym "&&"; randlx; rand2x] ->
If (sexpToExp randlx, sexpToExp rand2x, Lit (Bool false))

| Seq [Sym "||"; randlx; rand2x] ->
If (sexpToExp randix, Lit (Bool true), sexpToExp rand2x)
| Seq (Sym "cond" :: clausexs) -> desugarCond clausexs

| Seq [Sym "bindseq"; Seq bindingxs; bodyx] ->
let (names, defns) = parseBindings bindingxs in
desugarBindseq names defns (sexpToExp bodyx)
| Seq [Sym "bindpar"; Seq bindingxs; bodyx] ->
let (names, defns) = parseBindings bindingxs in
let names’ = map StringUtils.fresh names in
desugarBindseq names’ defns (renameAll names names’ (sexpToExp bodyx))
| Seq (Sym "list" :: eltxs) -> desugarList eltxs
| Seq [Sym "quote"; sexp] -> Lit (desugarQuote sexp)

Figure 8: VALEX all-at-once desugarings, Part 1.

4.4 A Better Approach: Incremental Desugaring Rules

Rather than desugaring constructs like bindseq all at once, we can desugar them incrementally,
one step at a time, by applying rules like the following:

(bindseq O Epogy) ~ Ebody
(bindseq ((I E) ...) Epygy) ~> (bind I E (bindseq (...) Ejpgy))

The first rule says that that a bindseq with an empty binding list is equivalent to its body. The
second rule says that a bindseq with n bindings can be rewritten into a bind whose body is a
bindseq with n — 1 bindings. Here the ellipses notation “...” should be viewed as a kind of meta-
variable that matches the “rest of the bindings” on the left-hand side of the rule, and means the
same set of bindings on the right-hand side of the rule. Because the rule decreases the number of
bindings in the bindseq with each rewriting step, it specifies the well-defined unwinding of a given
bindseq into a finite number of nested bind expressions.

Fig. 7?7 shows a complete list of incremental desugaring rules for VALEX. There are no in-
cremental rules for bindpar because the required renaming is challenging to implemented as a
transformation on s-expressions. (Recall that the rename function works on instances of exp, not
instances of sexp.)

We can implement the desugaring rules by changing the sexpToExp function to perform these
rules. For instance, we can use the following clauses to implement bindseq:
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(* parse bindings of the form ((<namex_1> <defnx_1>) ... (<namex_n> <defnx_n>))
into ([name_1;...;name_n], [defn_1; ...; defn_n]) *)
and parseBindings bindingxs =
unzip (map (fun bindingx ->
(match bindingx with
Seq[Sym name; defn] -> (name, sexpToExp defn)
| _ -> raise (SyntaxError ("ill-formed bindpar binding"
(sexpToString bindingx)))))
bindingxs)

and desugarCond clausexs = (* clausesx is a list of sexp clauses *)
match clausexs with
[Seq[Sym "else"; defaultx]] -> sexpToExp defaultx
| (Seqltestx; resultx])::restx ->
If (sexpToExp testx, sexpToExp resultx, desugarCond restx)
| _ -> raise (SyntaxError ("invalid cond clauses: "
= (sexpToString (Seq clausexs))))

(* defns and body have already been parsed *)
and desugarBindseq names defns body =
foldr2 (fun name defn rest -> Bind(name, defn, rest)) names defns

and desugarList eltxs =
match eltxs with
[1 -> Lit(List[D)
| eltx::eltxs’ -> PrimApp(valOf (findPrimop "prep"),
[sexpToExp eltx; desugarList eltxs’])

(* turns an sexp directly into a literal value *)
and desugarQuote sexp =
match sexp with
Sexp.Int i -> Int i
Sexp.Chr s -> Char s
Sexp.Str s -> String s
Sexp.Sym "#t" -> Bool true
Sexp.Sym "#f" -> Bool false
Sexp.Sym "#e" -> List []
Sexp.Sym s -> Symbol s
Seq eltxs -> List (map desugarQuote eltxs)
_ —> raise (SyntaxError ("invalid quoted expression" ~ (sexpToString sexp)))

Figure 9: VALEX all-at-once desugarings, Part 2.
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| Seq [Sym "bindseq"; Seq []; bodyx] -> sexpToExp bodyx
| Seq [Sym "bindseq"; Seq ((Seq[Sym name; defnx])::bindingxs); body] ->
sexpToExp (Seq[Sym "bind"; Sym name; defnx;
Seq[Sym "bindseq"; Seq bindingxs; bodyl]l)

Note that it is necessary to recursively invoke sexpToSexp on the result of transforming the bindseq
s-expression into a bind expression with a bindseq body.

(&& Erandl ErandQ) ~ (if Erandl ErandQ #f)
Cll Erandl ErandQ) ~ (if Erandl #t ErandQ)
(bindseq O Fpoay) ~ Eyody
(bindseq (I E) ...) Epqy) ~ (bind I E (bindseq (...) Epoay))
(cond (else Edefault)) ~ Edefault
(cond (Eyest Edefault) .. ~ (if Fiest Edeﬁzult (cond ...))
(1ist) ~> #e
(list Epg ...) ~> (prep Epq (list ...))
(quote int)) ~ int
(quote char)) ~ char
(quote string)) ~ string
(quote #t) ~ #t
(quote #f) ~ #£
(quote #e) ~ #e
(quote sym) ~ (sym sym)
(quote (sexpl ... sexpn)) ~ (1list (quote sexpl) ... (quote sexpn))

Figure 10: Desugaring rules for VALEX.

We can implement all the desugaring rules in Fig. 77 in a simlar fashion by directly extending
sexpToExp. However, if we are not careful, it is easy to forget to call sexpToExp recursively on the
results of our desugarings. It would be preferable to have an approach in which we could express
the desugaring rules more directly and they were executed in a separate pass rather than being
interleaved with the “regular” parsing of sexpToExp. Fig. 7?7 presents such an approach. It shows
how to encode incremental desugaring rules into an OCAML desugarRules construct. The desugar
function repeatedly applies these rules on an expression and all its subexpressions until no more of
them match.

Fig. 7?7 shows how to integrate the desugar function with the sexpToExp function. We re-
name the existing sexpToExp to sexpToExp’. Then sexpToSexp is simply the result of invoking
sexpToExp’ on the result of desugaring a given s-expression. So parsing now occurs in two distinct
phases: the desugaring phase (implemented by desugar) and the parsing phase (implemented by
sexpToExp’).

21



let rec desugar sexp =
let sexp’ = desugarRules sexp in
if sexp’ = sexp then (* efficient in OCAML if they’re pointer equivalent *)
match sexp with
Seq sexps —-> Seq (map desugar sexps)
| _ -> sexp
else desugar sexp’

and desugarRules sexp =
match sexp with

(* Handle Intex arg refs as var refs *)
Seq [Sym "$"; Sexp.Int i] -> Sym ("$" ~ (string_of_int i))

(* Note: the following desugarings for && and || allow
non-boolean expressions for second argument! *)

| Seq [Sym "&&"; x; y] -> Seq [Sym "if"; x; y; Sym "#f"]

| Seq [Sym "II|"; x; y] -> Seq [Sym "if"; x; Sym "#t"; y]

(* Scheme-style cond *)
| Seq [Sym "cond"; Seq [Sym "else"; default]] -> default
| Seq (Sym "cond" :: Seq [test; body] :: clauses) ->
Seq [Sym "if"; test; body; Seq(Sym "cond" :: clauses)]

| Seq [Sym "bindseq"; Seql]l; body] -> body
| Seq [Sym "bindseq"; Seq ((Seq[Sym name;defn])::bindings); body]
-> Seq[Sym "bind"; Sym name; defn; Seq[Sym "bindseq"; Seq bindings; body]]
(* Note: can’t handle bindpar here, because it requires renaming *)
(* See sexpToExp’ below for handling bindpar *)

(* list desugarings *)
| Seq [Sym "list"] -> Sym "#e"
| Seq (Sym "list" :: headx :: tailsx) ->
Seq [Sym "prep"; headx; Seq (Sym "list" :: tailsx)]

(* Scheme-like quotation *)

| Seq [Sym "quote"; Sexp.Int i] -> Sexp.Int i (* These are sexps, not Valex valus! *)
| Seq [Sym "quote"; Chr i] -> Chr i

| Seq [Sym "quote"; Str i] -> Str i

(* Quoted special symbols denote themselves *)

| Seq [Sym "quote"; Sym "#t"] -> Sym "#t"

| Seq [Sym "quote"; Sym "#f"] -> Sym "#f"

| Seq [Sym "quote"; Sym "#e"] -> Sym "#e"

(* Other quoted symbols s denote (sym s) *)

| Seq [Sym "quote"; Sym s] -> Seq [Sym "sym"; Sym s]

(* (quote (x1 ... xn)) -> (list (quote x1) ... (quote xn)) *)
| Seq [Sym "quote"; Seq xs] ->

Seq (Sym "list" :: (map (fun x -> Seq[Sym "quote"; x]) xs))
| _ —> sexp

(* For testing *)
let desugarString str =
StringUtils.println (sexpToString (desugar (stringToSexp str)))

Figure 11: VALEX desugaring expre%%ed via incremental desugaring rules.




and sexpToExp sexp = sexpToExp’ (desugar sexp)

(* val sexpToExp’ : Sexp.sexp —-> exp *)
and sexpToExp’ sexp =
match sexp with
Sexp.Int i -> Lit (Int i)

| Sexp.Chr ¢ -> Lit (Char c)

| Sexp.Str s -> Lit (String s)

(* Symbols beginning with # denote special values (not variables!) *)

| Sym s when String.get s O = ’#’ -> Lit (stringToSpecialValue s)

| Sym s -> Var s

| Seq [Sym "sym"; Sym s] -> Lit (Symbol s)

| Seq [Sym "bind"; Sym name; defnx; bodyx] ->
Bind (name, sexpToExp’ defnx, sexpToExp’ bodyx)

| Seq [Sym "if"; tstx; thnx; elsx] ->
If (sexpToExp’ tstx, sexpToExp’ thnx, sexpToExp’ elsx)

(* Implement BINDPAR desugaring directly here.

Can’t handle desugarings with renamings in desugar function *)

| Seq [Sym "bindpar"; Seq bindingsx; bodyx] ->
let (names, defns) = parseBindings bindingsx
in desugarBindpar names defns (sexpToExp’ bodyx)

| Seq (Sym p :: randsx) when isPrimop p ->  (* This clause must be last! *)
PrimApp(valOf (findPrimop p), map sexpToExp’ randsx)

| -> raise (SyntaxError ("invalid Valex expression: " ~

(sexpToString sexp)))

(* Strings beginning with # denote special values *)
and stringToSpecialValue s =
match s with
| "#t" -> Bool true (* true and false are keywords *)
"#f" -> Bool false (* for literals, not variables *)

|
| "#e" -> List [] (* empty list literal *)
| _ -> raise (SyntaxError ("Unrecognized special value: " ~ s))
(* parse bindings of the form ((<namex_1> <defnx_1>) ... (<namex_n> <defnx_n>))
into ([name_1;...;name_n], [defn_1; ...; defn_n]) *)

and parseBindings bindingsx =
unzip (map (fun bindingx ->
(match bindingx with
Seq[Sym name; defn] -> (name, sexpToExp’ defn)
| _ -> raise (SyntaxError ("ill-formed bindpar binding"
(sexpToString bindingx)))))
bindingsx)

(* desugars BINDPAR by renaming all BINDPAR-bound variables and
then effectively treating as a BINDSEQ *)
and desugarBindpar names defns body =
let freshNames = map StringUtils.fresh names in
foldr2 (fun n d b -> Bind(n,d,b))
(renameAll names freshNames body)
freshNames
defns

(* val stringToExp : string -> exp *)
and stringToExp s = sexpToExp (stringToSexp s) (* Desugar when possible *)

Figure 12: A version of sexpTogécp that incorporates desugaring.




(* val sexpToPgm : Sexp.sexp —> pgm *)
let rec sexpToPgm sexp =
match sexp with
Seq [Sym "valex"; Seq formals; body] ->
Pgm(map symToString formals, sexpToExp body)
(* Handle Bindex programs as well *)
| Seq [Sym "bindex"; Seq formals; body] ->
Pgm(map symToString formals, sexpToExp body)
(* Handle Intex programs as well x)
| Seq [Sym "intex"; Sexp.Int n; body] ->
Pgm (map
(fun i -> "$" -~ (string_of_int i))
(ListUtils.range 1 n),
sexpToExp body)
| _ -> raise (SyntaxError ("invalid Valex program: " ~ (sexpToString sexp)))

(* val symToString : Sexp.sexp -> string *)
and symToString sexp =
match sexp with
Sym s -> s
| _ -> raise (SyntaxError ("symToString: not a string -- " ~ (sexpToString sexp)))

(* val stringToPgm : string -> pgm *)
and stringToPgm s = sexpToPgm (stringToSexp s)

Figure 13: The VALEX sexpToPgm function. Note how it treats INTEX and BINDEX programs as
VALEX programs.
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