
Control
CS251 Handout #40

4 May 2006

Control Spring ’06 – p.1/28

What is Control?
In program execution, control is characterized by two components:

1. the expression/statement currently being evaluated:

CS111: the red control dot.

CS240: the program counter.

CS251: the argument to eval in the substitution model

2. The continuation = all pending operations to be performed when the
value of current expression is returned:

CS111: the pending frames in the Java Execution Model.

CS240: the stack of procedure call activation frames.

CS251: the context surrounding the current expression in the
substitution model

We will call the pair of (1) and (2) a control point. All computation is an
iteration through control points.

Control Spring ’06 – p.2/28



Control Point Example 1
Expression Continuation

(/ (+ (* 6 5) (- 7 3)) 2) ktop

⇒ (+ (* 6 5) (- 7 3)) k1=(λ (v1) (ktop (/ v1 2)))

⇒ (* 6 5) k2=(λ (v2) (k1 (+ v2 (- 7 3))))

⇒ (- 7 3) k3=(λ (v3) (k1 (+ 30 v3)))

⇒ (+ 30 4) k1

⇒ (/ 34 2) ktop

⇒ 17

Notes:

Continuations are modeled as single-argument functions.

ktop designates the top-level continuation (eg, prints result).

The above assumes left-to-right evaluation of arguments. (MIT
Scheme evaluates them right-to-left.)

Control Spring ’06 – p.3/28

Control Point Example 2: Recursive Factorial
(def (fact-rec n)

(if (= n 0)

1

(* n (fact-rec (- n 1)))))

Expression Continuation
⇒ (fact-rec 3) ktop

⇒ (fact-rec 2) k1 = (λ (v1) (ktop (* 3 v1)))

⇒ (fact-rec 1) k2 = (λ (v2) (k1 (* 2 v2)))

⇒ (fact-rec 0) k3 = (λ (v3) (k2 (* 1 v3)))

⇒ (* 1 1) k2

⇒ (* 2 1) k1

⇒ (* 3 2) ktop

⇒ 6

Control Spring ’06 – p.4/28



Control Point Example 3: Iterative Factorial
(def (fact-iter n) (fact-tail n 1))

(def (fact-tail num ans)

(if (= num 0)

ans

(fact-tail (- num 1) (* num ans))))

Expression Continuation
⇒ (fact-iter 3) ktop

⇒ (fact-tail 3 1) ktop

⇒ (fact-tail 2 3) ktop

⇒ (fact-tail 1 6) ktop

⇒ (fact-tail 0 6) ktop

⇒ 6

Note: A function call is tail recursive if it does not alter continuation

Control Spring ’06 – p.5/28

Control Aspects of Familiar Constructs
Evaluating nested subexpressions requires choosing an order and remembering what
to do next.

Argument evaluation order is left-to-right in most language.

Evaluation order unspecified in Scheme (right-to-left in MIT-Scheme).

Sequencing of statements in imperative language.

Conditionals allow branches in control flow.

Loops/tail recursion specify iterations.

Function/procedure call and return:

In many execution models (e.g., C, Pascal, Java), calling a procedure pushes an
activation frame on the call stack and returning from a procedure pops the
activation from from the call stack.

In properly tail-recursive languages (e.g. Scheme, most ML implementations)
stack is pushed by subexpression evaluation and procedure calls act like gotos
that pass arguments (see Guy Steele’s The Expensive Procedure Call Myth or
Lambda: The Ultimate Goto).

Control Spring ’06 – p.6/28



Altering the Normal Flow of Control
Sometimes want to alter the normal flow of control:

to immediately stop execution of the program, due to a user request
(typing Control-C) or encountering an error. E.g. halt opcode in
assembly language; error in HOFL, Scheme;

to return an answer immediately without processing all pending
computations. E.g. encountering a zero when finding the product of
elements in a list, array, or tree.

to handle an unusual situation that may need to be handled
differently in different contexts (an exception). E.g., division by zero,
out-of-bounds array access, unbound variables in environment
lookup.

Altering normal flow of control can be very convenient and efficient, but
can lead to “spaghetti code”. Dijkstra’s Goto Considered Harmful and the
structured programming movement of the 1970s advocated control
constructs with one control input and one control output.

Control Spring ’06 – p.7/28

Non-local Exits: return
In C, C++, and Java, return can force early exit of a function/method.

Example (Java): calculating array product. Want to return early if
encounter a zero. Also suppose that encountering any negative number
should cause the result to be -1.

public static int arrayProd (int[] a)

{

int prod = 1;

for (int i = 0; i < a.length; i++) {

if (a[i] == 0)

return 0; // Non-local exit from loop

else if (a[i] < 0) then

return -1; // Non-local exit from loop

else

prod = a[i] * prod;

}

return prod;

}
Control Spring ’06 – p.8/28



Non-local Exits: break
Java has labeled break statements for breaking out of a loop and
continue statement to jump to end of loop. C’s unlabeled break and
continue work on innermost enclosing loop.
public static int sumArrayProds (int[][] a)

{

int sum = 0;

outer:for (int i = 0; i < a.length; i++) {

int prod = 1;

inner:for (int j = 0; i < a[i].length; j++) {

if (a[i][j] < 0) // return current sum

break outer; // on negative num

else if (a[i][j] == 0)

prod = 0; break inner;

// Alternatively: continue outer;

else

prod = a[i][j] * prod;

}

sum = sum + prod;

}

return sum;

} Control Spring ’06 – p.9/28

Non-Local Exits: goto
In Pascal, can only express non-local exits via goto:
function product (outer_lst: intlist): integer;

label 17; {labels are denoted by numbers 0 to 9999}

function inner (lst: intlist): integer;

begin

if lst = nil then

inner := 1

else if lstˆ.head = 0 then

begin

product := 0; {sets return value of function}

goto 17; {control jumps to label 17}

end;

else

inner := lstˆ.head * inner(lstˆ.tail)

end;

begin

product := inner (outer_lst);

17: {end of program}

end;

Control Spring ’06 – p.10/28



Non-Local Exits: label and jump

We will study non-local exits in Scheme by extending it with the following
label and jump constructs:

(label Icp Ebody) evaluates Ebody in a lexical environment in
which the name Icp is bound to a first-class control point that
represents the continuation of the entire label expression. label
returns the value of Ebody unless jump is called on Icp , in which case
the value supplied to jump is returned.

(jump Ecp Eval) returns the value of Eval to the control point that is
the value of Ecp . jump signals an error if Ecp is not a control point.

Control Spring ’06 – p.11/28

label and jump: Simple Examples

(+ 1 (label exit (* 2 (- 3 (/ 4 1)))))

(+ 1 (label exit (* 2 (- 3 (/ 4 (jump exit 5))))))

(+ 1 (label exit

(* 2 (- 3 (/ 4 (jump exit (+ 5 (jump exit 6))))))))

(+ 1 (label exit1

(* 2 (label exit2

(- 3 (/ 4 (+ (jump exit2 5)

(jump exit1 6))))))))

Control Spring ’06 – p.12/28



label and jump: List Product

(define product

(lambda (outer-list)

(label return

(letrec ((inner (lambda (lst)

(if (null? lst)

1

(if (= (car lst) 0)

(jump return 0)

(* (car lst)

(inner (cdr lst))))))))

(inner outer-list)))))

Control Spring ’06 – p.13/28

label and jump: List Product Alternative

(define product

(lambda (outer-list)

(label return

(foldr (lambda (x ans)

(if (= x 0)

(jump return 0)

(* x ans)))

1

outer-list))))

Unlike the previous version, a jump is performed here on the way out of
the recursion rather than on the way in.

Control Spring ’06 – p.14/28



Control Points Introduced by label are First-Class

(define fact

(lambda (n)

(let ((loop ’later) ; don’t care about initial value

(ans 1))

(begin

(label top (set! loop (lambda ()

(jump top ’ignore))))

(if (= n 0)

ans

(begin

(set! ans (* n ans))

(set! n (- n 1))

(loop)))))))

Control Spring ’06 – p.15/28

First-class Control Points are Strange and Powerful

(let ((g (lambda (x) x)))

(letrec ((fact (lambda (n)

(if (= n 0)

(label base

(begin

(set! g (lambda (y)

(begin

(set! g (lambda (z) z))

(jump base y))))

1))

(* n (fact (- n 1)))))))

(+ (g 1)

(+ (fact 3) ; Cont. = (λ (v) (+ 1 (+ v ...)))

(+ (g 10)

(+ (fact 4) ;Cont. = (λ (v) (+ 1 (+ 60 (+ 10 (+ v ...)))))

(g 100)))))))

Control Spring ’06 – p.16/28



Scheme’s call-with-current-continuation

Off-the-shelf Scheme does not support label and jump.
But it does support call-with-current-continuation
(sometimes abbreviated cwcc) which encapsulates both
label and jump and can be used to implement many
advanced control constructs.

(call-with-current-continuation Eproc)
behaves like:

(let ((body-proc Eproc))
(label return

(body-proc (lambda (val)
(jump return val)))))

Control Spring ’06 – p.17/28

Example of call-with-current-continuation

(define product

(lambda (outer-list)

(call-with-current-continuation

(lambda (return)

(letrec

((inner (lambda (lst)

(cond ((null? lst) 1)

((= 0 (car lst)) (return 0))

(else (* (car lst)

(inner (cdr lst))))

))))

(inner outer-list))))))

Control Spring ’06 – p.18/28



Continuation Passing Style (CPS)
The constructs we have seen so far rely on implicit
continuations. It is possible to model non-local control flow by
passing explicit continuations in a style known as
continuation-passing style (CPS).

For example, here is a CPS version of recursive factorial:
(define fact-rec-cps

(lambda (n k) ; k is the explicit continuation

(if (= n 0)

(k 1)

(fact-rec-cps (- n 1)

(lambda (v) (k (* n v)))))))

(fact-rec-cps 3 (lambda (v) v))

(fact-rec-cps 4 (lambda (v) (+ 1 (* 2 v))))

Control Spring ’06 – p.19/28

Exception Handling
Want to be able to “signal” exceptional situations and
handle them differently in different contexts.

Many languages provide exception systems:

Java’s throw and try/catch

OCaml’s raise and try/with

Common Lisp’s throw and catch

Control Spring ’06 – p.20/28



raise, handle, and trap
We study exception handling in Scheme extended with:

(raise Itag E) Evaluate E to value V and raise exception with tag Itag and value V.

(handle Itag Ehandler Ebody) First evaluate Ehandler to a one-argument handler
function Vhandler . Then evaluate Ebody to value Vbody . If no exception is encountered,
return Vbody . If an exception is raised with tag Itag and value Vbody , the call to handle

returns with the value of the application (Vhandler Vbody) evaluated at the point of the
handle (termination semantics).

(trap Itag Ehandler Ebody) is evaluated like (handle Itag Ehandler Ebody)

except that if an exception is raised with tag Itag and value Vbody , the call to raise

returns with the value of the application (Vhandler Vbody) evaluated at the point of the
raise (resumption semantics).

handle/trap effectively bind Vhandler in a dynamically scoped exception handler
namespace, and (raise Itag E) looks up Itag in this namespace.

Control Spring ’06 – p.21/28

Exception Handling Examples 1
(define test

(lambda ()

(let ((raiser (lambda (x)

(if (< x 0)

(raise negative x)

(if (even? x)

(raise even x)

x)))))

(+ (raiser 1) (+ (raiser -3) (raiser 4))))))

What is the value of the following, where handler_1 and
handler_2 range over {handle,trap}? First assume left-to-right
argument evaluation, then right-to-left.

(handler_1 negative (lambda (v) (- v))

(handler_2 even (lambda (v) (* v v))

(test)))

Control Spring ’06 – p.22/28



Exception Handling Examples 2
What are the value of the following expressions, where
handler ranges over {handle,trap}?

; Expression 1

(handler a (lambda (x) (+ 4000 x))

(handler b (lambda (x) (+ 300 (raise a (+ x 4)))

(handler a (lambda (x) (+ 20 x))

(+ 1 (raise b 2)))))

; Expression 2

(handler c (lambda (x) (* x 10))

(+ 1 (raise c (+ 2 (raise c 4)))))

Control Spring ’06 – p.23/28

Exception Handling In OCaml
OCaml’s raise and try/with uses termination semantics.

In raise E, E must evaluate to an exception packet
created by an exception constructor (where exceptions are
effectively an extensible datatype).

try Ebody with clauses evaluates Ebody and returns its
value unless an exception is raised, in which case the
matching clause in clauses is evaluated and its value is
returned as the value of try.

Control Spring ’06 – p.24/28



OCaml Exception Example
exception Neg of int

exception Even of int

let raiser x =

if x < 0 then

raise (Neg x)

else if (x mod 2) = 0 then

raise (Even x)

else

x

let test () = (raiser 1) + (raiser -3) + (raiser 4)

let innerTest () = try test() with

Neg y -> raiser(7 + -y)

| Even z -> 3 * z

let outerTest () = try innerTest() with

Neg y -> -y

| Even z -> z * z

Can translate this example into Java using throw and try/catch.

Control Spring ’06 – p.25/28

Implementing raise

(raise Itag E) ; (raise-tag ’Itag E)

(define raise-tag

(lambda (tag value)

(let ((handler

;; Look up handler in current handler env.

;; Handlers are dynamically scoped!

(env-lookup tag (get-handler-env))))

(if (unbound? handler)

(error (string-append "Unhandled exception "

(symbol->string tag)

": "))

(handler value)))))

Control Spring ’06 – p.26/28



Implementing handle and trap 1

(define with-handler

(lambda (tag make-handler try-thunk)

(begin

(let ((old-env (get-handler-env)))

(begin

;; Remember handler in dynamic environment

(set-handler-env! (env-bind tag

(make-handler old-env)

(get-handler-env)))

;; Evaluate try-thunk

(let ((try-value (try-thunk)))

;; In normal case, pop handler

(begin

(set-handler-env! old-env) ; reinstate old handler env.

try-value))))))) ;; Return value

Control Spring ’06 – p.27/28

Implementing handle and trap 2
(trap tag handler body) desugars to

(let ((*handler* handler) ; only evaluate once

(*thunk* (lambda () body))) ; avoid capturing *handler*

(with-handler ’tag

(lambda (old-env)

(lambda (value) (*handler* value))) ; ignores old-env

*thunk*))

(handle tag handler body) desugars to

(let ((*handler* handler) ; only evaluate once

(*thunk* (lambda () body))) ;avoid capturing *handler*

(call-with-current-continuation

(lambda (handle-cont)

(with-handler ’tag

(lambda (old-env)

(lambda (value)

;; Invoking HANDLE-CONT returns directly to

;; appropriate handle, ignoring current continuation.

(begin

(set-handler-env! old-env) ; reinstall old-env

(handle-cont (*handler* value)))))

*thunk*))))
Control Spring ’06 – p.28/28


	What is Control?
	Control Point Example 1
	{large Control Point Example 2: Recursive Factorial}
	{large Control Point Example 3: Iterative Factorial}
	Control Aspects of Familiar Constructs
	Altering the Normal Flow of Control
	Non-local Exits: 	exttt {return}
	Non-local Exits: 	exttt {break}
	Non-Local Exits: 	exttt {goto}
	Non-Local Exits: 	exttt {label} and 	exttt {jump}
		exttt {label} and 	exttt {jump}: Simple Examples
		exttt {label} and 	exttt {jump}: List Product
	{large {}	exttt {label} and 	exttt {jump}: List Product Alternative}
	{
ormalsize Control Points Introduced by 	exttt {label} are First-Class}
	{
ormalsize First-class Control Points are Strange and Powerful}
	{
ormalsize Scheme's 	exttt {call-with-current-continuation}}
	{
ormalsize Example of 	exttt {call-with-current-continuation}}
	Continuation Passing Style (CPS)
	Exception Handling
		exttt {raise}, 	exttt {handle}, and 	exttt {trap}
	Exception Handling Examples 1
	Exception Handling Examples 2
	Exception Handling In OCaml
	OCaml Exception Example
	Implementing 	exttt {raise}
	Implementing 	exttt {handle} and 	exttt {trap} 1
	Implementing 	exttt {handle} and 	exttt {trap} 2

