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Higher-Order List Functions

One of the commandments of computer science is thou shalt abstract over common patterns of

computation. Upon seeing that two code fragments share similar structure, a good programmer
will write a function whose body captures the commonalities and whose parameters express what is
different between the fragments. Then the two code fragments can be expressed as two invocations
of the same function on different arguments. For example, suppose we see the following pattern of
pair addition:

. . . let ((a,b),(c,d)) = (p,q) in let (p’,q’) = (a+c,b+d) in . . .

. . . let ((w,x),(y,z)) = (r,s) in let (r’,s’) = (w+y,x+z) in . . .

Then we should introduce a function that captures this pattern:

let add_pairs ((x1,y1),(x2,y2)) = (x1+x2,y1+y2)

. . . let (p’,q’) = add_pairs (p,q) in . . .

. . . let (r’,s’) = add_pairs (r,s) in . . .

First-class functions are essential tools for abstracting over common idioms. Often what differs
between two similar patterns can only be expressed with function parameters. For example, to
capture the pattern in

. . . let ((a,b),(c,d)) = (p,q) in let (p’,q’) = (a+c,b+d) in . . .

. . . let ((w,x),(y,z)) = (r,s) in let (r’,s’) = (w-y,x-z) in . . .

we need to abstract over the fact that + is used in the first case and - is used in the second. We
can do this with a functional argument:

let glue_pairs f ((x1,y1),(x2,y2)) = (f x1 x2, f y1 y2)

. . . let (p’,q’) = glue_pairs (+) (p,q) in . . .

. . . let (r’,s’) = glue_pairs (-) (r,s) in . . .

This handout explores how first class functions support abstraction over common list processing
idioms. We will use these abstractions heavily throughout the rest of the semester.

1 List Transformation: Mapping

Consider the following map_sq function:

let rec map_sq xs =

match xs with

[] -> []

| x::xs’ -> (x*x)::(map_sq xs’)
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If we want to instead increment each element of the list rather than square it, we would write the
function map_inc:

let rec map_inc xs =

match xs with

[] -> []

| x::xs’ -> (x+1)::(map_inc xs’)

The idiom of applying a function to each element of a list is so common that it is captured by
a function traditionally called map:

let rec map f xs =

match xs with

[] -> []

| x::xs’ -> (f x)::(map f xs’)

Given map, it is easy to define map_sq and map_inc:

# let map_sq xs = map (fun x -> x*x) xs;;

val map_sq : int list -> int list = <fun>

# let map_inc ys = map (fun x -> x+1) ys;;

val map_inc : int list -> int list = <fun>

Interestingly, we can define map_sq and map_inc without naming the list arguments:

# let map_sq = map (fun x -> x*x);;

val map_sq : int list -> int list = <fun>

# let map_inc = map (fun x -> x+1);;

val map_inc : int list -> int list = <fun>

In these examples, we are partially applying the curried map function by supplying it with only
its function argument. It returns a function that expects the second argument (the input list)
and returns the resulting list. There is no need to name the input list. These simplifications are
instances of a general simplification known as eta-reduction, which says that fun x -> f x can
be simplified to f for any function f.1

It’s not necessary to name mappers. As show in Fig. 1, we can use map directly wherever we
need it. These examples highlight that map can be used on any type of input and output lists.
Indeed, the type of map inferred by Ocaml is:

val map : (’a -> ’b) -> ’a list -> ’b list

So map uses an ’a -> ’b function to map an ’a list to a ’b list.
The examples also show how partially applied curried functions (such as ((-) 1), ((flip (-)) 1),

and (glue_pairs (+))) can be used as functional arguments to map. This is a benefit of defining

1Eta-reduction, or η-reduction, can interfere with Ocaml’s ability to detect polymorphism, as we’ll see below. In

such cases, the eta-expanded version is preferred.
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# map ((-) 1) [6;4;3;5;8;7;1];;

- : int list = [-5; -3; -2; -4; -7; -6; 0]

# map ((flip (-)) 1) [6;4;3;5;8;7;1];;

- : int list = [5; 3; 2; 4; 7; 6; 0]

# map (fun z -> (z mod 2) = 0) [6;4;3;5;8;7;1];;

- : bool list = [true; true; false; false; true; false; false]

# map (fun w -> (w, w*w)) [6;4;3;5;8;7;1];;

- : (int * int) list = [(6, 36); (4, 16); (3, 9); (5, 25); (8, 64); (7, 49); (1, 1)]

# map (fun ys -> 6::ys) [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

# map (glue_pairs (+)) [((1,2),(3,4)); ((8,5),(6,7))];;

- : (int * int) list = [(4, 6); (14, 12)]

# map app5 (map to_the [0;1;2;3;4]);;

- : int list = [1; 5; 25; 125; 625]

Figure 1: Examples of map.

multiple argument functions in curried form rather than tupled form. Sometimes we introduce
new curried functions because they are useful in generating functional arguments to higher-order
functions like map. For example, there is no prefix consing function in Ocaml((::) does not work),
so we define

# let cons x xs = x :: xs;;

val cons : ’a -> ’a list -> ’a list = <fun>

Now we can write

# let mapcons x ys = map (cons x) ys;;

val mapcons : ’a -> ’a list list -> ’a list list = <fun>

# mapcons 6 [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

Programmers new to the notion of higher-order functions make some predictable mistakes when
using higher order functions like map. Here’s an incorrect attempt to define a function that doubles
each integer in a list that is often seen from such programmers:

let map_dbl xs = map (x * 2) xs (* INCORRECT DECLARATION *)

There are two main things wrong with this definition:

1. The variable x is not declared anywhere and so is undefined. Perhaps there is a naive expec-

3



tation that Ocaml will understand that x is intended to range over the elements of xs, but
it won’t. Instead, Ocaml will determine that x is a is a so-called free variable and will flag
it as an error.

2. Even in the case where x happens to be declared earlier to be an integer that’s available to
this definition, the expression (x * 2) would have type int. But the first argument to map

must have a type of the form ’a -> ’b, i.e., it must be a function. In map_dbl, it should
have type int -> int, not int.

Both problems can be fixed by introducing a function value using the fun syntax:

let map_dbl xs = map (fun x -> x * 2) xs (* CORRECT DECLARATION *)

The fun x -> . . . introduces a parameter x that is bound in the body expression x * 2, so x is no
longer a free variable. And fun creates a value with function type, which resolves the type problem.

For beginners, a good strategy is start by using fun explicitly in any situation that requires a
functional argument or result. For example, it is always safe to invoke map using the template

map (fun x -> body) list

In this template, we think of x as being bound to each of the elements of list one by one to
compute body. The answers are then collected into the resulting list. Once a definition is cor-
rect, it can sometimes be made more concise by using eta reduction and/or partial applications
of curried functions to simplify the function parameter. For example, fun x -> 2 * x is equiva-
lent to fun x -> (( * ) 2) x2, which is equivalent to (( * ) 2), and the function declaration
let map_dbl xs = map (( * ) 2) xs is equivalent to let map_dbl = map (( * ) 2).

Sometimes it’s helpful to map over two lists at the same time. We accomplish this via map2:

let rec map2 f xs ys =

match (xs,ys) with

([], _) -> []

| (_, []) -> []

| (x::xs’,y::ys’) -> (f x y) :: map2 f xs’ ys’

For example:

2We write ( * ) rather than (*) because the later would be misinterpreted by Ocaml as the beginning of a

comment.
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# map2 (+) [1;2;3] [40;50;60];;

- : int list = [41; 52; 63]

# map2 (fun b x -> if b then x+1 else x*2) [true;false;false;true] [3;4;5;6];;

- : int list = [4; 8; 10; 7]

# let pair x y = (x,y);;

val pair : ’a -> ’b -> ’a * ’b = <fun>

# map2 pair [1;2;3;4] [’a’;’b’;’c’];;

- : (int * char) list = [(1, ’a’); (2, ’b’); (3, ’c’)]

As illustrated in the last example, map2 ignores extra elements if one list is longer than the
other. This is not the only way to handle lists with unequal length. Ocaml provides a List.map2

function that instead raises an exception if the lists have unequal length. Ocaml’s List.map

function is the same as the map defined above.
We can generalize the last example to the handy zip function:

# let zip (xs,ys) = map2 pair xs ys;;

val zip : ’a list * ’b list -> (’a * ’b) list = <fun>

2 List Transformation: Filtering

The map function is a list transformer: it takes a list as an input and returns another list as an
output. Another list transformation is filtering, in which a given list is processed into another list
that contains those elements from the input list that satisfy a given predicate (in the same relative
order). While mapping produces an output list that has the same length as the input, filtering
produces an output list whose length is less than or equal to the length of the input list.

For example, here is an evens procedure that selects all the even elements from a given list:

let rec evens xs =

match xs with

[] -> []

| x::xs’ -> if (x mod 2) = 0 then x::(evens xs’) else evens xs’

This is an instance of a more general filtering idiom, in which a predicate p determines which
elements of the given list should be kept in the result:

# let rec filter p xs =

match xs with

[] -> []

| x :: xs’-> if p x then x :: filter p xs’ else filter p xs’

val filter : (’a -> bool) -> ’a list -> ’a list

For example:
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# filter (fun x -> (x mod 2) = 0) [6;4;3;5;8;7;1];;

- : int list = [6; 4; 8]

# filter ((flip (>)) 4) [6;4;3;5;8;7;1];;

- : int list = [6; 5; 8; 7]

# filter (fun x -> (abs (x - 4)) >= 2) [6;4;3;5;8;7;1];;

- : int list = [6; 8; 7; 1]

The filter function is available in the Ocaml library as List.filter.

3 List Accumulation: Folding

3.1 foldr Encapsulates the Divide/Conquer/Glue Idiom on Lists

A common way to consume a list is to recursively accumulate a value from back to front starting
at the base case and combining each element with the result of processing the rest of the elements.
For example, here is an integer list summation function that uses this strategy:

# let rec sum xs =

match xs with

[] -> 0

| (x::xs’) -> x + sum xs’

val sum : int list -> int = <fun>

This pattern of list accumulation is captured by the foldr function:

# let rec foldr binop null xs =

match xs with

[] -> null

| x :: xs’ -> binop x (foldr binop null xs’)

val foldr : (’a -> ’b -> ’b) -> ’b -> ’a list -> ’b

Given a list of elements xs = x1, x2, . . . , xk, a binary operator b, and a null value n, foldr b n xs

yields the value (b x1 (b x2 (. . . (b xk n) . . .))). The name foldr comes from the fact that this
function folds (combines) the elements of the list from right to left.

foldr is “the mother of all list recursive functions” because it captures the idiom of the di-
vide/conquer/glue problem-solving strategy on lists. In the general case, foldr divides the list into
head and tail (x :: xs’), conquers the tail by recursively processing it (foldr binop null xs’),
and glues the head to the result for the tail via binop. It is also necessary to specify the result for
the empty case (null). Because divide/conquer/glue is an incredibly effective strategy for process-
ing lists, almost any list recursion can be expressed by supplying foldr with an appropriate binop
and null (although in some cases we’ll see that these can be rather complex).

In general, a function that expresses divide/conquer/glue over a recursive data structure is
known as a catamorphism. foldr is the catamorphism for lists. Later in the course we shall
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encounter catamorphisms for other recursive data structures.
A strategy for defining a list recursive function fcn in terms of foldr is to begin with the

template:

let fcn xs = foldr (fun x ans -> body) null xs

where null is the result of fcn [] and body needs to be fleshed out. For example to define a sum

function that sums the elements of a list, we begin with

let sum xs = foldr (fun x ans -> body) 0 xs.

In (fun x ans -> body), x stands for the current element being processed (the head of the
list) and ans stands for the result of recursively processing the tail of the list. For example, in
sums [7;3;6;4], the outermost x is 7 and the outermost ans is 3 + 6 + 4 = 13. We want to
combine these with + to yield 20. So the fleshed out definition is:

let sum xs = foldr (fun x ans -> x + ans) 0 xs.

In this case, we can write the definition more succinctly as:

let sum xs = foldr (+) 0 xs.

Consider another example: the function all_positive, which returns true if all elements of a
list are positive and false otherwise. Since all_positive [] is true (each of the zero numbers
in [] is positive), our template is:

let all_positive xs = foldr (fun x ans -> body) true xs.

In (fun x ans -> body), x will stand for an element of the list (a number) and ans will stand for
the result of processing the rest of the list (a boolean indicating if all the rest of the elements are
positive). The appropriate body to combine x and ans in this case is (x > 0) && ans, yielding
the definition:

let all_positive xs = foldr (fun x ans -> (x > 0) && ans) true xs.

Let’s do one more example: the list reversal function reverse. Since reverse [] is [], our
template is:

let reverse xs = foldr (fun x ans -> body) [] xs.

In our combining function, x will stand for an element of the list, and ans will stand for the result
of reversing the rest of the elements in the list. For example, in processing [1;2;3;4], x will be
1, and ans will be [4;3;2]. How do we combine these to yield the desired result [4;3;2;1]? Via
[4;3;2]@[1]. Generalizing this concrete example yields the final definition:

let reverse xs = foldr (fun x ans -> ans @ [x]) [] xs.

Figs. 2 and 3 show examples of using foldr to define a variety of other functions. Note how
classical list processing functions like append, flatten, and mapcons, and even higher-order list
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functions like map and filter, can be defined in terms of foldr.
We can make many of the definitions in Figs. 2 and 3 even shorter by using eta-reduction to

remove the list argument. For example, rather than writing

let prod ns = foldr ( * ) 1 ns

we could instead write

let prod = foldr ( * ) 1

Unfortunately, in some cases eta-reduction interacts badly with Ocaml’s type reconstruction.
For example, consider this alternative definition of flatten from Fig. 3:

# let flatten’ = foldr (@) [];;

val flatten’ : ’_a list list -> ’_a list = <fun>

Note the presence of the type variable ’_a in place of the usual type variable ’a. This is a restricted
type variable that can denote exactly one type in the rest of the program.3 For instance, suppose
we first use flatten’ on an int list list:

# flatten’ [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

Now ’_a is bound to int list and flatten’ can only be applied to lists of integer lists. Any
other application is an error:

# flatten’ [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

Characters 11-14:

flatten’ [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

^^^

This expression has type char but is here used with type int

In cases where eta reduction introduces restricted type variables, we can often improve type recon-
struction by putting back in the extra argument:

# let flatten xss = foldr (@) [] xss;;

val flatten : ’a list list -> ’a list = <fun>

# flatten [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

# flatten [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

- : char list = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

A foldr-like function is available in the Ocaml List module via the name List.fold_right.
However, it differs from foldr in the order in which it takes its arguments. As shown by the
following type, it takes its arguments in the following order: (1) (curried) binary operator (2) list

3It is introduced by the Ocaml type reconstruction algorithm to satisfy something called the value restriction,

which restricts polymorphism for let-bound expressions that are not syntactic functions. The value restriction is a

simple way of fixing a subtle problem in type soundness that can be introduced by such expressions.
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# let prod ns = foldr ( * ) 1 ns;;

val prod : int list -> int = <fun>

# prod [6;4;3;5;8;1;7];;

- : int = 20160

# let minlist ns = foldr min max_int ns;;

val minlist : int list -> int = <fun>

# minlist [6;4;3;5;8;1;7];;

- : int = 1

# let maxlist ns = foldr max min_int ns;;

val maxlist : int list -> int = <fun>

# maxlist [6;4;3;5;8;1;7];;

- : int = 8

# let all_even ns = foldr (fun x ans -> ((x mod 2) = 0) && ans) true ns;;

val all_even : int list -> bool = <fun>

# all_even [6;4;3;5;8;1;7];;

- : bool = false

# all_even [6;4;8];;

- : bool = true

# let exists_positive ns = foldr (fun x ans -> (x > 0) || ans) false ns;;

val exists_positive : int list -> bool = <fun>

# exists_positive [-3;-1;2;-5];;

- : bool = true

# exists_positive [-3;-1;-2;-5];;

- : bool = false

Figure 2: foldr examples, part 1
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# let append xs ys = foldr cons ys xs;;

val append : ’a list -> ’a list -> ’a list = <fun>

# append [7;2;4] [3;1;5];;

- : int list = [7; 2; 4; 3; 1; 5]

# let flatten xss = foldr (@) [] xss;;

val flatten : ’a list list -> ’a list = <fun>

# flatten [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

# let mapcons x yss = foldr (fun ys ans -> (x::ys) :: ans) [] yss;;

val mapcons : ’a -> ’a list list -> ’a list list = <fun>

# mapcons 6 [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

# let subsets xs = foldr (fun x ans -> ans @ (mapcons x ans)) [[]] xs;;

val subsets : ’a list -> ’a list list = <fun>

# subsets [1;2;3];;

- : int list list = [[]; [3]; [2]; [2; 3]; [1]; [1; 3]; [1; 2]; [1; 2; 3]]

# let map f xs = foldr (fun x ans -> (f x) :: ans) [] xs;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

# let filter p xs = foldr (fun x ans -> if p x then x :: ans else ans) [] xs;;

val filter : (’a -> bool) -> ’a list -> ’a list = <fun>

Figure 3: foldr examples, part 2
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to be folded and (3) null value:

# List.fold_right;;

- : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

3.2 for all, exists, and some

The all/exists examples in Fig. 2 suggest some higher-order list functions for determining if all or
some elements in a list satsify a predicate. For example, the following for_all function determines
if all elements of a list satsify a predicate p:

# let for_all p xs = foldr (&&) true (map p xs)

val for_all : (’a -> bool) -> ’a list -> bool = <fun>

# let all_positive = for_all ((flip (>)) 0);;

val all_positive : int list -> bool = <fun>

# all_positive [6;4;3;5;8;1;7];;

- : bool = true

# let all_even = for_all (fun x -> (x mod 2) == 0);;

val all_even : int list -> bool = <fun>

# all_even [6;4;3;5;8;1;7];;

- : bool = false

The following exists function determines if at least one element of a given list satisfies a
predicate p:

# let exists p xs = foldr (||) false (map p xs)

val exists : (’a -> bool) -> ’a list -> bool = <fun>

# let exists_positive = exists ((flip (>)) 0);;

val exists_positive : int list -> bool = <fun>

# exists_positive [-3;-1;2;-5];;

- : bool = true

# let exists_even = exists (fun x -> (x mod 2) == 0);;

val exists_even : int list -> bool = <fun>

# exists_even [7;1;3;9;5];;

- : bool = false

Sometimes we want the first value from a list that satisfies a predicte. Since a list may not
contain such a value, we need some way of expressing that there might not be any. The Ocaml

’a option type is used in situations like this. The Some constructor, with type ’a -> ’a option,
is used to inject a value into the option type, while the None constructor, with type ’a option, is
used to indicate that the option type has no value. Pattern matching is used to distinguish these
cases. For example:
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# map (fun x -> match x with

Some(v) -> v*v

| None -> 0)

[Some 3; None; Some 5; Some 2; None];;

- : int list = [9; 0; 25; 4; 0]

Using the option type, we can declare a higher-order function that returns Some of the first
element of the list satisfying the predicate and None if there isn’t one:

# let some p = foldr (fun x ans -> if p x then Some x else ans) None;;

val some : (’a -> bool) -> ’a list -> ’a option = <fun>

# some ((flip (>)) 0) [-5; -2; 4; -3; 1];;

- : int option = Some 4

# some ((flip (>)) 0) [-5; -2; -4; -3; -1];;

- : int option = None

Just because we can define a list processing function in terms of foldr doesn’t mean that it’s
a good idea to do so. For example, the for_all, exists, and some functions given above aren’t
very efficient because they necessarily test the predicte on all elements of the list. For example,
if we apply exists_even to a thousand element list whose first element is even, it will still check
all other 999 elements to see if they’re even! For these functions, it’s better to hand-craft versions
that perform the minimum number of predicate tests:

let rec for_all p xs =

match xs with

[] -> true

| x::xs’ -> (p x) && for_all p xs’

let rec exists p xs =

match xs with

[] -> false

| x::xs’ -> (p x) || exists p xs’

let rec some p xs =

match xs with

[] -> None

| x::xs’ -> if p x then Some x else some p xs’

The List module provides functions List.for_all and List.exists that are equivalent to
the more efficient for_all and exists defined above.

3.3 More foldr Examples

Although almost any list processing function can be written in terms of foldr, it may take a fair
bit of cleverness to do this, and sometimes definitions can be rather complex. We illustrate this in
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the context of a few more examples.

tails

Consider a tails function that returns a list of a given list and all of its successive tails:

# tails [1;2;3;4];;

- : int list list = [[1; 2; 3; 4]; [2; 3; 4]; [3; 4]; [4]; []]

# tails [];;

- : ’_a list list = [[]]

To define tails in terms of foldr, we can fill in the following template:

let tails2 xs = foldr (fun x ans -> body) [[]] xs

The null value of [[]] is determined by the expected answer for tails []. The rest of the template
is suggested by the structure of foldr. In (fun x ans -> body), x will be bound to the head
of the list and ans will be bound to the result of recursively processing the tail. For example,
when this function is applied to the first element of [1;2;3], x will be bound to 1, and ans will
be bound to [[2; 3]; [3]; []] (i.e., the result of processing [2;3]). How do we combine 1

with [[2; 3]; [3]; []] to produce [[1; 2; 3]; [2; 3]; [3]; []]? We need to create the
list [1;2;3] and prepend it to ans. We can create [1;2;3] by prepending 1 onto the first element
of ans. This leads to the following defintion:

let tails2 xs = foldr (fun x ans -> (x::List.hd ans)::ans) [[]] xs

isSorted

The isSorted function determines if a list of elements is sorted from least to greatest according
to <=. E.g., isSorted [1;3;4;7;9] is true while isSorted [1;3;7;4;9] is false. Can we define
isSorted using foldr and friends? Yup! But it’s tricky, since the foldr needs to accumulate a
pair of values: (1) the head of the sublist (so that we can compare it with the head of the list) and
(2) a boolean indicating whether the sublist is sorted. In the base case, the empty list has no head,
so we’ll use the None value of the option type to indicate this and use a Some value for all other
cases. We arrive at the following definition:

let isSorted xs = snd (foldr (fun x (opt,ans) ->

match opt with

None -> (Some x, true)

| Some y -> (Some x, (x <= y) && ans))

(None, false)

xs)

There are other ways to define isSorted. For example, suppose that we zip the list together
with its tail to give a list of pairs:

# zip([1;3;7;4;9], List.tl [1;3;7;4;9])

- : (int * int) list = [(1, 3); (3, 7); (7, 4); (4, 9)]

Then a non-empty list is sorted if and only the first element of each pair is <= to the second.
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Since we can’t take the tail of an empty list, we need to handle that case specially. The resulting
definition is:4

let isSorted xs =

match xs with

[] -> true

| _ -> for_all (fun (a,b) -> (a <= b)) (zip (xs, List.tl xs))

We can replace (fun (a,b) -> (a <= b)) by uncurry (<=) if we introduce the following defini-
tion:

# let uncurry f (a,b) = f a b;;

val uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

3.4 foldr’

Functions like isSorted are tricky to define with foldr because they need information in the tail
of the list in addition the value being accumulated (a boolean in the case of isSorted). Above, we
invented a complex mechanism for pairing the tail information with the accumulated value. But a
simpler approach is to provide an alternative version of foldr that explicitly supplies the combining
function with the tail of the list in addition to the head and the accumulated value. We call this
function foldr’. Its combining function is a ternary operator rather than a binary operator:

let rec foldr’ ternop null xs =

match xs with

[] -> null

| x :: xs’ -> ternop x xs’ (foldr’ ternop null xs’)

val foldr’ : (’a -> ’a list -> ’b -> ’b) -> ’b -> ’a list -> ’b

For example, here is a version of isSorted defined in terms of foldr’:

let isSorted2 xs = foldr’ (fun x xs’ ans -> ans && (xs’ = [] || x < List.hd xs’)) true xs

3.5 foldr2 and Friends

As we saw with map2, it is sometimes helpful to have list processing functions that process the
elements of two lists in lock step. The foldr2 function is a general function for accumulating
values over two lists:

4The function List.tl extracts the tail of a list. Its companion List.hd extracts the head. Although it is always

possible to extract the head and tail by pattern matching, these are sometimes convenient.
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let rec foldr2 ternop null xs ys=

match (xs,ys) with

([], _) -> null

| (_, []) -> null

| (x :: xs’, y::ys’) -> ternop x y (foldr2 ternop null xs’ ys’)

For example:

let zip (xs,ys) = foldr2 (fun x y ans -> (x,y)::ans) [] xs ys

let map2 f = foldr2 (fun x y ans -> (f x y)::ans) []

let for_all2 p = foldr2 (fun x y ans -> ((p x y) && ans)) true

let exists2 p = foldr2 (fun x y ans -> ((p x y) || ans)) false

let some2 p = foldr2 (fun x y ans -> if (p x y) then Some (x,y) else ans) None

3.6 foldl

There are situations where we want to accumulate the values in a list from left to right rather than
from right to left. This is accomplished by foldl:

# let rec foldl ans binop xs =

match xs with

[] -> ans

| x :: xs’ -> foldl (binop ans x) binop xs’

val foldl : ’a -> (’a -> ’b -> ’a) -> ’b list -> ’a

For associative and commutative operators like + and *, foldl calculates the same final answer as
a corresponding foldr, though the intermediate values may be different. But for other operators,
it behaves differently. For example:
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# foldl 0 (+) [1;2;3;4];;

- : int = 10

# foldl 0 (-) [1;2;3;4];;

- : int = -10

# let rev xs = foldl [] (flip cons) xs;; (* linear-time list reversal *)

val rev : ’a list -> ’a list = <fun>

# rev [1;2;3;4];;

- : int list = [4; 3; 2; 1]

# let digits2int ds = foldl 0 (fun ans x -> x+(10*ans)) ds;;

val digits2int : int list -> int = <fun>

# digits2int [3;1;2;5];;

- : int = 3125

4 List Generation

4.1 gen

In addition to transforming and consuming lists, there are useful abstractions for producing lists.
A handy abstraction for list generation is the following gen function:

# let rec gen next isDone seed =

if isDone seed then

[]

else

seed :: (gen next isDone (next seed))

val gen : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a list

This function generates a sequence of values starting with an initial seed value, and uses the next

function to generate the next value in the sequence from the current one. Generation continues
until the isDone predicate is satisfied. At that point, all the elements in the sequence (except for
the one satisfying the isDone predicate) are returned in a list.

Here are some sample uses of gen:

# let range lo hi = gen ((+) 1) ((<) hi) lo ;;

val range : int -> int -> int list = <fun>

# range 7 19;;

- : int list = [7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19]
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# gen ((flip (/)) 2) ((=) 0) 100;;

- : int list = [100; 50; 25; 12; 6; 3; 1]

# gen List.tl ((=) []) [1;2;3;4;5];; (* List.tl takes the tail of a list *)

- : int list list = [[1; 2; 3; 4; 5]; [2; 3; 4; 5]; [3; 4; 5]; [4; 5]; [5]]

The gen function can be viewed as an iteration abstraction that lists together all the interme-
diate states of an iteration. The next function indicates how to get from the current state to the
next state, and the isDone function indicates when the iteration is done. The following examples
show how iterative factorial and Fibonacci computations can be expressed with gen:

# let fact_states n = gen (fun (n,a) -> (n-1,n*a)) (fun (n,a) -> n = 0) (n,1)

val fact_states : int -> (int * int) list = <fun>

# fact_states 5;;

- : (int * int) list = [(5, 1); (4, 5); (3, 20); (2, 60); (1, 120)]

# let fibsTo n = gen (fun (a,b) -> (b,a+b)) (fun (a,b) -> a > n) (0,1)

val fibsTo : int -> (int * int) list = <fun>

# fibsTo 13;;

- : (int * int) list = [(0, 1); (1, 1); (1, 2); (2, 3); (3, 5); (5, 8); (8, 13)]

# map fst (fibsTo 100);;

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

4.2 iterate

The following iterate function is similar to gen but only returns the final state of an iteration
rather than a list of all states:

let rec iterate next isDone state =

if isDone state then

state

else

iterate next isDone (next state)

For example:

# let facti n = snd (iterate (fun (x,a) -> (x-1,x*a)) (fun (x,_) -> x = 0) (n,1))

val facti : int -> int = <fun>

# facti 5;;

- : int = 120

# let fibi n =

match iterate (fun (i,a,b) -> (i+1,b,a+b)) (fun (i,_,_) -> i = n) (0,0,1) with

(_,ans,_) -> ans;;

val fibi : int -> int = <fun>
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# fibi 10;;

- : int = 55

4.3 ana

We can generalize gen into a more flexible function known as an anamorphism:

# let rec ana g seed =

match g seed with

None -> []

| Some(h,seed’) -> h:: ana g seed’

val ana : (’a -> (’b * ’a) option) -> ’a -> ’b list = <fun>

For example:

let map’ f = ana (fun xs -> match xs with

[] -> None

| x::xs’ -> Some(f x, xs’))

let gen’ next isDone =

ana (fun x -> if isDone x then None else Some(x, next x))

let fibsTo’ n =

ana (fun (a,b) -> if a > n then None else Some(a, (b, a+b))) (0,1)

In general, an anamorphism creates instances of a recursive datatype while a catamorphism
accumulates results over instances of a recursive datatype.
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