
CS251 Programming Languages Handout # 25

Wellesley College 9 March 2006

Postfix: A Simple Stack Language

Several exercises and examples in this course will involve the Postfix mini-language. Post-

fix is a simple stack-based language inspired by the PostScript graphics language, the Forth

programming language, Hewlett Packard calculators, and stack-based bytecode interpreters. Here
we give a brief introduction to Postfix.

1 Syntax

1.1 Commands

The basic syntactic unit of a Postfix program is the command. Commands have the following
form:

• Any integer numeral. E.g., 17, 0, -3.

• Any string literal (possibly containing the usual escape characters). E.g., "CS301",
"Golf? No sir -- prefer prison flog!",
"You say \"Goodbye\"\n\tand I say \"Hello\"."

• One of the following special command tokens: add, div, eq, exec, ge, get, gt, le, lt, mul,
ne, pop, pri, prs, put, rem, sel, sub, and swap.

• An executable sequence — a single command represented as a parenthesized sequence of
subcommands separated by whitespace.

Since executable sequences contain other commands (including other executable sequences), they
can be arbitrarily nested. An executable sequence counts as a single command despite its hierar-
chical structure.

1.2 Programs

A Postfix program is a parenthesized sequence consisting of (1) the token postfix followed by (2)
an integer indicating the number of program parameters followed by (3) any number of Postfix

commands. For example, here are some sample Postfix programs:

(postfix 1 0 get mul)

(postfix 2 add 2 div)

(postfix 4 4 get 5 get mul mul swap 4 get mul add add)

(postfix 1 ((3 get swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

1

(postfix 1 (2 get 0 eq

("\n" prs)

("\n n=" prs 2 get pri "; ans=" prs 1 get pri

2 get mul 2 get 1 sub 2 put 3 get exec)

sel exec)

swap

1 3 get exec)

1.3 Abstract vs. Concrete Syntax

The abstract syntax of Postfix programs and commands is captured in the following Ocaml data
type definitions:

type pgm = (* PostFix programs *)

Pgm of int * com list

and com = (* PostFix commands *)

Int of int (* push integer numeral *)

| Str of string (* push string literal *)

| Seq of com list (* executable sequence *)

| Pop (* pop top value from stack *)

| Swap (* swap top two values of stack *)

| Sel (* choose one of two values from stack *)

| Get (* push value at given stack index *)

| Put (* store top of stack at given stack index *)

| Prs (* print string *)

| Pri (* print integer *)

| Exec (* execute sequence at top of stack *)

| Add | Sub | Mul | Div | Rem (* arithmetic ops *)

| LT | LE | EQ | NE | GE | GT (* relational ops *)

For example, the concrete program

(postfix 1 ((3 get swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

would be expressed as the following abstract syntax tree:

Pgm(1, [Seq[Seq[Int 2; Get; Swap; Exec];

Seq[Int 3; Mul; Swap; Exec];

Swap];

Seq[Int 5; Sub];

Swap;

Exec;

Exec])

The concrete syntax of Postfix programs and commands has been designed so that they can
be easily parsed and unparsed via s-expressions. Converting between the concrete and abstract

2

syntax of Postfix is left as an exercise.

2 Semantics

The meaning of a Postfix program is determined by executing its command sequence in left to
right order. Each command manipulates an implicit stack of values that initially contains the
integer arguments of the program (where the first argument is at the top of the stack and the last
argument is at the bottom). A value on the stack is either (1) an integer (2) a string or (3) an
executable sequence. The result of a program is the integer value at the top of the stack after its
command sequence has been completely executed. A program signals an error (designated error)
if (1) the final stack is empty, (2) the value at the top of the final stack is not an integer, or (3) an
inappropriate stack of values is encountered when one of its commands is executed.

The behavior of Postfix commands is summarized in Fig. 1. Each command is specified in
terms of how it manipulates the implicit stack.

The step-by-step execution of a Postfix program can be understood in terms of the opera-
tion of an abstract machine, where the state of the abstract machine is characterized by two
components: (1) a sequence of commands to be executed and (2) a stack of values that initially
contains the arguments to the program (top down from first to last). On each execution step, the
first command in the command sequence component is removed from the command sequence and
executed; the result is an updated command sequence and stack. Like any iteration (remember
CS111 and CS230?), this iterative execution process can be presented as a table in which each
row contains the state variables of the iteration (in this case, the state of the abstract machine =
commands and stack); and the rules of the iteration (in this case, the execution rules) are used to
determine the next row of the table from the previous row. We shall call such a table the trace of
an execution.

For example, consider a Postfix program that takes three arguments (call them a, b, and c)
and calculates a · b− 2 · c:

(postfix 3 mul swap 2 mul swap sub)

Note how swaps are used to reorder arguments on the stack. Here is a trace of this program run
on the argument list [3;4;5] :

3

• An integer numeral n : Push n onto the stack.

• A string literal s : Push s onto the stack.

• sub : Call the top stack value v1 and the next-to-top stack value v2. Pop these two values off the
stack and push the result of v2− v1 onto the stack. If there are fewer than two values on the stack or
the top two values aren’t both numerals, signal an error. The other binary arithmetic operators —
add (addition), mul (multiplication), div (integer divisiona) and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v1 is zero.

• lt : Call the top stack value v1 and the next-to-top stack value v2. Pop these two values off the
stack. If v2 < v1, then push a 1 (a true value) on the stack, otherwise push a 0 (false). The other
binary comparison operators — le (less than or equals), eq (equals), ne (not equals), gt (greater
than), and ge (greater than or equals) — behave similarly. If there are fewer than two values on the
stack or the top two values aren’t both numerals, signal an error.

• pop : Pop the top element off the stack and discard it. Signal an error if the stack is empty.

• swap : Swap the top two elements of the stack. Signal an error if the stack has fewer than two values.

• sel : Call the top three stack values (from top down) v1, v2, and v3. Pop these three values off the
stack. If v3 is the numeral 0, push v1 onto the stack; if v3 is a non-zero numeral, push v2 onto the
stack. Signal an error if the stack does not contain three values, or if v3 is not a numeral.

• get : Call the top stack value vindex and the remaining stack values (from top down) v1, v2, . . ., vn.
Pop vindex off the stack. If vindex is a numeral i such that 1 ≤ i ≤ n, push vi onto the stack. Signal
an error if the stack does not contain at least one value, if vindex is not a numeral, or if i is not in
the range [1, n].

• put : Call the top stack value vindex, the next-to-top stack value vval, the remaining stack values
(from top down) v1, v2, . . ., vn. Pop vindex and vval off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n, replace the slot holding vi on the stack by vval. Signal an error if the stack does not
contain at least two values, if vindex is not a numeral, or if i is not in the range [1, n].

• prs : Call the top stack value vs. Pop vs off the stack. If vs is the string s, display s in the terminal
window. Signal an error if the stack does not contain at least one value or if vs is not a string.

• pri : Call the top stack value vi. Pop vi off the stack. If vi is the numeral i, display i in the terminal
window. Signal an error if the stack does not contain at least one value or if vi is not a numeral.

• (C1 . . . Cn) : Push the executable sequence (C1 . . . Cn) as a single value onto the stack. Executable
sequences are used in conjunction with exec.

• exec : Pop the executable sequence from the top of the stack, and prepend its component commands
onto the sequence of currently executing commands. Signal an error if the stack is empty or the top
stack value isn’t an executable sequence.

aThe integer division of n and d returns the integer quotient q such that n = qd + r, where r (the remainder) is
such that 0 ≤ r < |d| if n ≥ 0 and −|d| < r ≤ 0 if n < 0.

Figure 1: Semantics of Postfix commands.

4

Commands Stack

mul

swap

2

mul

swap

sub

3

4

5

swap

2

mul

swap

sub

12

5

2

mul

swap

sub

5

12

mul

swap

sub

2

5

12

swap

sub

10

12

sub 12

10

-2

Often we do not care about the step-by-step details of a Postfix program execution, but only
the final result. We use the notation P −args−−→ v to mean that executing the Postfix program P

on the arguments args returns the value v. The notation P −args−−→ error means that executing the
Postfix program P on the arguments signals an error. Errors are caused by inappropriate stack
values or an insufficient number of stack values. In practice, it is desirable for an implementation
to indicate the type of error. We will use comments (delimited by squiggly braces) to explain errors
and other situations.

To illustrate the meanings of various commands, we show the results of some simple program
executions. For example, numerals are pushed onto the stack, while pop and swap are the usual
stack operations:

5

(postfix 0 1 2 3) −
[]
−→ 3 {Only top stack value returned.}

(postfix 0 1 2 3 pop) −
[]
−→ 2 {pop throws top value away}

(postfix 0 1 2 swap 3 pop) −
[]
−→ 1

(postfix 0 1 swap) −
[]
−→ error {Not enough values to swap.}

(postfix 0 1 pop pop) −
[]
−→ error {Empty stack on second pop.}

(postfix 0 1 pop) −
[]
−→ error {Final stack is empty.}

Program arguments are pushed onto the stack (from last to first) before the execution of the
program commands.

(postfix 2) −
[3,4]
−−→ 3 {Initial stack has 3 on top with 4 below.}

(postfix 2 swap) −
[3,4]
−−→ 4

(postfix 3 pop swap) −
[3,4,5]
−−−→ 5

It is an error if the actual number of arguments does not match the number of parameters specified
in the program.

(postfix 2 swap) −
[3]
−→ error {Wrong number of arguments.}

(postfix 1 pop) −
[4,5]
−−→ error {Wrong number of arguments.}

Program arguments must be integers — they cannot be strings or executable sequences.
Numerical operations are expressed in postfix notation, in which each operator comes after the

commands that compute its operands. add, sub, mul, div, and rem are binary integer operators,
while lt, le, eq, ne, ge, and gt are binary integer predicates returning either 1 (true) or 0 (false).

(postfix 1 4 sub) −
[3]
−→ -1

(postfix 1 4 add 5 mul 6 sub 7 div) −
[3]
−→ 4

(postfix 5 add mul sub swap div) −
[7,6,5,4,3]
−−−−−→ -20

(postfix 3 4000 swap pop add) −
[300,20,1]
−−−−−→ 4020

(postfix 2 add 2 div) −
[3,7]
−−→ 5 {An averaging program.}

(postfix 0 17 3 div) −
[]
−→ 5

(postfix 0 17 3 rem) −
[]
−→ 2

(postfix 0 3 4 lt) −
[]
−→ 1

(postfix 0 3 4 gt) −
[]
−→ 0

(postfix 0 3 4 lt 10 add) −
[]
−→ 11

(postfix 1 4 mul add) −
[3]
−→ error {Not enough numbers to add.}

(postfix 2 4 sub div) −
[4;5]
−−→ error {Divide by 0.}

In all the examples seen so far, each stack value is used at most once. Sometimes it is necessary
to use a value two or more times. The get command is used in these situations; it puts at the
top of the stack a copy of a stack value at a specified index.1 The index is 1-based, from the top

1get is a generalized version of a common operation in stack languages, often called dup, that duplicates the top
element on the stack.

6

of the stack down, not counting the index value itself. It is an error to use an index that is out
of bounds. Note that index of a given value increases every time a new value is pushed on the
stack. In addition to copying a value so that it can be used more than once, get is also helpful for
accessing values that are not near the top of the stack.

(postfix 2 1 get) −
[5;6]
−−→ 5

(postfix 2 2 get) −
[5;6]
−−→ 6

(postfix 2 3 get) −
[5;6]
−−→ error {Too large an index}

(postfix 2 0 get) −
[5;6]
−−→ error {Too small an index}

(postfix 1 1 get mul) −
[5]
−→ 25 {A squaring program}

(postfix 4 {Given args a, b, c, x, calculates ax2 + bx + c.}
4 get {get x}
5 get {get x again, at new index}
mul {push x2 on stack}
2 get mul {multiply x2 by a}
5 get {get x again, at newest index}
4 get {get b at new index}
mul {calculate bx}
add {add ax2 and bx}
4 get {get c}
add {ax2 + bx + c is now at top of stack}

) −
[3;4;5;10]
−−−−−→ 345

Whereas get copies a value from a specified index on the stack, the put command stores a new
value into a specified index on the stack. It can be used to model the mutable variables and data
of other languages in Postfix.

(postfix 2 {Given args a, b and c, calculate ac - b}
3 get {Push c}
mul {Replace c and a by ac on top of stack}
2 put {Replace c by ac on bottom of stack}
sub {Calculate ac - b}

) −
[2;3;4]
−−−→ 5

Executable sequences are compound commands like (2 mul) that are pushed onto the stack as
a single value. They can be executed later by the exec command. Executable sequences act like
subroutines in other languages. Execution of an executable sequence is similar to a subroutine call,
except that transmission of arguments and results is accomplished via the stack.

7

(postfix 1 (2 mul) exec) −
[7]
−→ 14 {(2 mul) is a doubling subroutine.}

(postfix 0 (0 swap sub) 7 swap exec) −
[]
−→ -7

(postfix 0 (7 swap exec) (0 swap sub) swap exec) −
[]
−→ -7

(postfix 0 (2 mul)) −
[]
−→ error {Final top of stack is not an integer.}

(postfix 0 3 (2 mul) gt) −
[]
−→ error {Executable sequence where number expected.}

(postfix 0 3 exec) −
[]
−→ error {Number where executable sequence expected.}

(postfix 1 ((3 get swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec) −
[7]
−→ 9 {Given n, calculates 2n-5}

The last example illustrates that evaluations involving executable sequences can be rather contorted.
Fig. 2 shows a trace for this example. Convince yourself that for an argument n, the program in
the last example calculates 2n− 5 (though not in a straightforward way!).

8

Commands Stack

((3 get swap exec) (2 mul swap exec) swap)

(5 sub)

swap

exec

exec

7

(5 sub)

swap

exec

exec

((3 get swap exec) (2 mul swap exec) swap)

7

swap

exec

exec

(5 sub)

((3 get swap exec) (2 mul swap exec) swap)

7

exec

exec

((3 get swap exec) (2 mul swap exec) swap)

(5 sub)

7

(3 get swap exec)

(2 mul swap exec)

swap

exec

(5 sub)

7

(2 mul swap exec)

swap

exec

(3 get swap exec)

(5 sub)

7

swap

exec

(2 mul swap exec)

(3 get swap exec)

(5 sub)

7

exec (3 get swap exec)

(2 mul swap exec)

(5 sub)

7

3

get

swap

exec

(2 mul swap exec)

(5 sub)

7

get

swap

exec

3

(2 mul swap exec)

(5 sub)

7

swap

exec

7

(2 mul swap exec)

(5 sub)

7

exec (2 mul swap exec)

7

(5 sub)

7

2

mul

swap

exec

7

(5 sub)

7

mul

swap

exec

2

7

(5 sub)

7

swap

exec

14

(5 sub)

7

exec (5 sub)

14

7

5

sub

14

7

sub 5

14

7

9

7

Figure 2: Step-by-step execution of a contorted exec example.

9

The sel command selects between two values. It can be used in conjunction with exec to
conditionally execute one of two executable sequences.

(postfix 1 2 3 sel) −
[1]
−→ 2

(postfix 1 2 3 sel) −
[0]
−→ 3

(postfix 1 2 3 sel) −
[17]
−−→ 2 {Any non-zero value is ‘‘true’’}

(postfix 0 (2 mul) 3 4 sel) −
[]
−→ error {Test not a number.}

(postfix 4 lt (add) (mul) sel exec) −
[3;4;5;6]
−−−−→ 30

(postfix 4 lt (add) (mul) sel exec) −
[4;3;5;6]
−−−−→ 11

Postfix’s combination of exec, sel, and get/put is very powerful, since it permits the ex-
pression of arbitrary iterations and recursions. For example, here is an iterative factorial program
written in Postfix:

(postfix 1 ({factorial loop code}
2 get 0 eq {is n = 0?}
() {if yes, we’re done; ans is on top of stack}
(2 get mul {if no, update state vars: ans ← n*ans}
2 get 1 sub 2 put {and n ← n-1;}
3 get exec) {then execute loop again}

sel exec)

swap {swap n with factorial loop code}
1 {push initial answer = 1}
3 get exec {execute loop}

)

To see how this works, consider the following execution trace for calculating the factorial of 3. To
simplify the trace, many steps have been omitted, and the executable sequence annotated {factorial
loop code} has been abbreviated as FactIter A key invariant maintained during the loop is that
the bottom three stack values are, from top to bottom, (1) the current answer (i.e., the running
product of numbers n processed so far); (2) the current value of n; and (3) the executable sequence
FactIter.

10

Commands Stack

FactIter swap 1 3 get exec 3

swap 1 3 get exec FactIter 3

1 3 get exec 3 FactIter

3 get exec 1 3 FactIter

get exec 3 1 3 FactIter

exec FactIter 1 3 FactIter

2 get 0 eq () (2 get mul 2 get 1 sub 2 put 3 get exec) sel exec) 1 3 FactIter

. . . many steps omitted . . .

2 get 0 eq () (2 get mul 2 get 1 sub 2 put 3 get exec) sel exec) 3 2 FactIter

. . . many steps omitted . . .

2 get 0 eq () (2 get mul 2 get 1 sub 2 put 3 get exec) sel exec) 6 1 FactIter

. . . many steps omitted . . .

2 get 0 eq () (2 get mul 2 get 1 sub 2 put 3 get exec) sel exec) 6 0 FactIter

. . . many steps omitted . . .

6 0 FactIter

11

It is even possible to calculate factorial recursively in Postfix, as is demonstrated by the
following program:

(postfix 1 ({factorial recursion code}
2 get 0 eq {is n = 0?}
(pop pop 1) {if yes, return 1}
(2 get 1 sub {push n-1}
2 get 1 get exec {call fact recursively}
swap pop {delete fact code}
mul {multiply on way out}

)

sel exec)

1 get exec {call fact initially}

)

To see how it works, consider an execution trace on the argument 3 (Fig. 3). We use the name
FactRec to abbreviate the executable sequence annotated {factorial recursion code}, and we omit
many intermediate steps. On the way into the recursion, each integer from the initial argument
value n down to 0 is pushed onto the stack along with a copy of the FactRec sequence. Additionally,
the “pending code” swap pop mul is added to the command sequence. This pending code, which
multiplies the numbers on the stack, is performed on the way out of the recursion.

It turns out that Postfix is as powerful as any programming language can be. It is Turing

complete, which means that it can express any computable function. Any Turing complete lan-
guage is not only powerful, but also dangerous, in the sense that it is possible to write “infinite
loops” that never return. Here is a simple infinite loop program:

(postfix 0 (1 get exec) 1 get exec) −
[]
−→ {Never returns from infinite loop!}

To see why this is a infinite loop, consider its execution trace:

Commands Stack

(1 get exec) 1 get exec

1 get exec (1 get exec)

get exec 1 (1 get exec)

exec (1 get exec) (1 get exec)

1 get exec (1 get exec)

Hey! We’ve been here before, and will be here again infinitely many times!

The only commands we haven’t seen in action yet are those involving strings. These aren’t
strictly necessary, but are nice to have for debugging purposes. For example:

12

Commands Stack

FactRec 1 get exec 3

1 get exec FactRec

3

get exec 1

FactRec

3

exec FactRec

FactRec

3

2 get 0 eq (pop pop 1)

(2 get 1 sub 2 get 1 get exec swap pop mul)

sel exec

FactRec

3

. . . many steps omitted . . .

2 get 0 eq (pop pop 1)

(2 get 1 sub 2 get 1 get exec swap pop mul)

sel exec

swap pop mul

FactRec

2

FactRec

3

. . . many steps omitted . . .

2 get 0 eq (pop pop 1)

(2 get 1 sub 2 get 1 get exec swap pop mul)

sel exec

swap pop mul

swap pop mul

FactRec

1

FactRec

2

FactRec

3

. . . many steps omitted . . .

2 get 0 eq (pop pop 1)

(2 get 1 sub 2 get 1 get exec swap pop mul)

sel exec

swap pop mul

swap pop mul

swap pop mul

FactRec

0

FactRec

1

FactRec

2

FactRec

3

. . . many steps omitted . . .

pop pop 1

swap pop mul

swap pop mul

swap pop mul

FactRec

0

FactRec

1

FactRec

2

FactRec

3

. . . many steps omitted . . .

swap pop mul

swap pop mul

swap pop mul

1

FactRec

1

FactRec

2

FactRec

3

. . . many steps omitted . . .

swap pop mul

swap pop mul

1

FactRec

2

FactRec

3

. . . many steps omitted . . .

swap pop mul 2

FactRec

3

. . . many steps omitted . . .

6

Figure 3: Trace of the recursive factorial program on the input 3.

13

(postfix 2

"\nAdding " prs {Display ‘‘Adding ’’ after a newline}
2 get pri {Display 1st arg}
" and " prs {Display ‘‘ and ’’}
1 get pri {Display 2nd arg}
"\n" prs {Display newline}
add {Return sum of args}

) −
[3;7]
−−→ 10 {Returns 10, after displaying ‘‘Adding 7 and 3’’ on the console}

14

As a more compelling example of using strings in a program, consider annotating the iterative
factorial program with code that prints the values of n and ans at the beginning of each iteration
of the loop:

(postfix 1 (2 get 0 eq

("\n" prs)

("\n n=" prs 2 get pri "; ans=" prs 1 get pri

2 get mul 2 get 1 sub 2 put 3 get exec)

sel exec)

swap

1 3 get exec)

For example, running the above program on 5 returns 120 after displaying the following text in the
console window:

n=5; ans=1

n=4; ans=5

n=3; ans=20

n=2; ans=60

n=1; ans=120

15

